

In this issue: New TV Boosters from Old Tuners -

"Naturally I like to sell RCA Radio Batteriesthey're my brand. When my customers think of $R C A$-they remember the local radio dealers and servicemen selling RCA tubes and batteries. That's why my steady business grows when I sell RCA Batteries-my customers look to a radio dealer
 for RCA Radio Batteries."

"My battery inventory problems were licked when I started
 to concentrate on RCA Radio Batteries. I found that with ten RCA Battery types I can do 95% of my dollar volume in batteries. And what's more . . . with the complete line of RCA Batteries I have a type to sell for all leading portable radio models in use today. Last year my RCA Battery inventory turned over 15 TIMES."

"National television and radio advertising plus outstanding merchandising and promotional backing make RCA Batteries my fast-selling profit makers. By publicizing my store as local $R C A$ Battery headquarters, I find I'm attracting many new customers for my other radio products and services. It sure pays to sell RCA Batteries."

IRADIO E:IE:TiRONICS

CONTENTS

Hugo Gernsback Editor and Publisher
M. Harvey Gernsback

Editorial Director
Fred Shunaman
Managing Editor
Robert F. Scott
W2PWG, Technical Editor
Mortimer Bernstein
Associate Editor
I. Queen

Editorial Associate
Matthew Mand
Television Consultant
Angie Pascale
Production Manager
Wm. Lyon McLaughlin
Tech. Illustration Director Sol Ehrlich

Art Director

Lee Robinson
General Manáger
John J. Lamson
Sales Manager
G. Aliquo

Circulation Manager
Robert Fallath
Promotion Manager

MPA

Member
Magazine Publishers
Association
Ediforial (Page 27)
Closed-Circuit Television by Hugo Gernsbock 27
Television (Pages 28-41)
New Boosters from Old Tunersby Joseph Morsholl28
Design Data on Video Amplifiers, Part IV. by Alan G. Sorensenby Fred M. Borr
Signal Tracing in TV, Port III by Engineering Staff, Scalo Rodio Co. 3432
elevision?-it's a Cinch-Fourth Conversation 36
conducted by Matthew Mand TV Service Clinic 40
Electronics (Pages 42-44)
Transistors. by John R. Pierce 42
Audio (Pages 45-48)
A Bridged-T Audio Control. by Wm. Austin 45
Overcoming PA Hookup Problems by N. H. Crowhurst 46
Servicing-Test Instruments (Pages 49-53)
Transistor Microammeter by Nathaniel Rhita 49
TV Chassis Simplified 50
Stubs by Jesse Dines 52
Theory and Engineering (Pages 54-56)
The Effect of Sporadic E on TV Reception. by Ernes.t K. Smith. Jr. 54
Construction (Pages 58-64)
Sensitive Capacity Relay...................................... by E. W. Scott 58
Amateur (Page 66)
IN34 NBFM-PM Modulator. by George W. Maki 66
New Design (Pages 68-83)
by Fred Shunaman 68
New Tubes 79
Departments

The Radio Month	8	Radio-Electronic		People	113
Radio Business..	14	Circuits	96	Communications	115
With the		Try This One...	101	Electronic	
Technician	84	Question Box.	104	Literature	118
New Devices.	89	Technotes	108	Book Reviews.	119

Miscollany111

ON THE COVER (See page 32) Barbara Reid makes tuning adjustments on the G.I. u.h.f. front end. Scene is the General Instrument factory in Elizabeth, N. J. Color original by Avery Slack

[^0]
by SHOP-METHOD HOME TRAINING

ADVANCE! Raise your earning power-learn RADIO-TELEVISION-ELECTRONICS

GOOD JOBS AWAIT THE TRAINED RADIO-TV TECHNICIAN
There is a place for you in the great Radio-TelevisionElectronics industry when you are trained as National Schools will train you at home!

Trained technicians are in growing demand at good pay -in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities. OUR METHOD IS PROVED BY THE SUCCESS OF NATIONAL SCHOOLS TRAINED MEN, ALL OVER THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN

Many National students pay for all or part of their training with spare time earnings. We'll show you how you can do the same! Early in your training, you receive "Sparetime Work" Lessons which will enable you to earn extra money servicing neighbors' and friends' Radio and Television receivers, appliances, etc.

Signal Generator

National Schools Training is All-Embracing

National Schools prepares you for your choice of many job opportunities. Thousands of home, portable, and auto radios are being sold daily-more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

Business of Your Own - Broadcasting

Radio Manufacturing, Sales, Service - Telecasting
Television Manufacturing, Sales, Service
Laboratories: Installation, Maintenance of Electronic Equipment Electrolysis, Call Systems
Garages: Auto Radio Sales, Service
Sound Systems and Telephone Companies, Engineering Firms
Theatre Sound Systems, Police Radio
And scores of other good jobs in many related fields.

TELEVISION TRAINING

You get a complete series of up-to-theminute lessons covering all phases of repairing, servicing and construction. The same lesson texts used by resident students in our
 modern and complete Television broadcast studios, laboratories and classrooms!

MASTER ALL PMASES!

LEARN BY DOING
You receive and keep all the modern equipment slown above, including tubes and valuable, professional qual-
FREE! RADIO-TV BOOK AND SAMPLE LESSON! Send today for National Schools' new,
illustrated Bóok of Opportunity in Radio-Television Electronics, and unt actual Sample Lesson. No costno obligation. Use the coupon now-we'll answer by refurn

APPROVED FOR VETERANS AND NON-VETERANS
 Check coupon below

Both Resident and Home Study Courses Offered!

NATIONAL SCHOOLS

LOS ANGELES 37, CALIFORNIA - ESTABLISHED 1905 IN CANADA: 193 E. HASTINGS STREET, VANCOUVER, B.C.

FIND OUT NOW-MAIL COUPON TODAY!

NATIONAL SCHOOLS, Dept. RG-63
Mail in envelope 000 South Figueroa Street Los Angeles 37, California or paste on postal card.

Send Free Radio-TV Electronics book and free sample lesson. I understand no salesman will call on me.
NAME
AGE ADDRESS

CITY

\qquad ZONE_STATE
Check here if released from service less than 4 years ago. \square Check here if interested in Resident School Training.

Cable lasher appears to right of workmon. As the cable and supporting strand feed through, the machine rotates, binding them together with steel lashing wire. Meanwhile, a winch houls the lasted coble into position.
I_{T} is a job your telephone company faces every day. Thour sands of miles of cable go up each year-all secured to steel strand running from pole to pole. The best way to secure cable is to lash it to the strand with a spiral binding of wire.

One way to do this is to raise cable and strand separately, then lash them together by a rotating machine pulled along by workmen on the ground. This produces a strong, tight support for the cable. But each pole has to be climbed as many as four times. So Bell Laboratories engineers devised an easier way.

Now, lashing can be done on the ground so that cable, strand and lashing wire may be pulled into position as a complete assembly. Usually workmen need make only two trips up each pole.

For telephone users, the new way means that cable can be installed faster, while costs are kept down. It shows again how work at Bell Telephone Laboratories impraves each part of your telephone system.

...by the mile?

Bell Telephone Laboratories

IMPROVING TELEPHONE SERVICE FOR
america provides careers for creative men in mechanical engineering

What's your goal in TV-ELECTRONICS
 and how close to it are you?

Do you have a career time-table? Do you know how much you should or could be earning two years from now? Five years? Many men are plodders without a plan. They wander through life never doing what they want to do, never receiving enough pay, never achieving true carcer satisfaction. Because they never knew ahead of time where they should or could be at a given date, they never planned ahead. When an opening arises, somebody else is promoted. When January lst rolls around, they're just where they were a year before. Their error, failure to plan, can be the lesson which shows you the secret of future success. In this expanding, bustling TV-Electronics world, there is a whole lifetime of happiness and high earnings waiting for you, if you name your goals, and take steps to reach them. Thousands of ambitious young men have found success in TV-Electronics through the aid of the CREI booklet, "Your Future in the New World of Electronics." The newest edition tells of electronics' golden opportunities. 152 TV stations are now on the air with 2,000 more coming. There are over $23,000,000$ TV sets and over 100 million radios in use.

This is the era of Communication: aeronautical, marine, police and fire, industrial, land transportation communications; this is the era of defense orders and a manufacturing industry which last year alone sold 3.8 billion dollars worth of electronic equipment, and is expected to do no less than 10 billion dollars worth excluding military orders. All these developments mean positions; in development, research, design, production, testing, inspection, manufacture, broadcasting, telecasting and servicing. Who will get these positions? You-if you have a career time-table; if you can foresee your future in electronics; if you are willing to advance your knowledge; if you spend 2 minutes to write for your copy of "Your Future In the New World of Electronics," and follow the plan it describes.
This is the booklet that shows you how CREI home study leads the way to greater earnings. However, being an accredited technical school, CREI promises you no short-cuts. You must translate your willingness to learn into salable technical knowledge via study. CREI knows what it means to grow along with a booming industry. This year CREI is celebrating its 26th Anniversary, having started in 1927 in the early days of radio. Since then CREI has provided thousands of professional radiomen with technical educations. During World War II, CREI trained thousands for the Armed Services. Leading firms use CREI courses for group training in electronics at company expense; among them are United Air Lines, Canadian Broadcasting Cor-
poration, Trans-Canada Airlines, Sears Roebuck \& Co., Bendix Products Division, All-American Cables and Radio Inc., RCA-Victor Division and Machlett Laboratories CREI courses, prepared by recognized experts, are constantly revised to keep them up-to-date. Student work is under the personal supervision of a CREI Staff Instructor who knows and teaches what industry needs.
You choose your own hours when you study at home. Upon completion you join the many CREI graduates who have found their diplomas keys-to-success in Radio, TV and Electronics. CREI alumni hold many top positions in America's leading firms.
At your service is the CREI Placement Bureau which helps find positions for students and graduates. Although CREI does not guarantee jobs, the burean now has many more requests for personal than can be filled. Talk to men in the field and check up on CREI's high standing in electronics instruction. Determine for yourself right now that your earnings are going to rise with your knowledge -and that you will rise with this booming industry. All this CREI offers you, provided you sincerely want to learn. Fill out the coupon and mail it today. We'll promptly send you your free copy of "Your Future in the New World of Electronics." The rest-your future-is up to you.

MAIL COUPON FOR FREE BOOKLET

CAPITOL RADIO ENGINEERING INSTITUTE

Dept. 1463224 16th St.. N.W.. Washington 10, D. C.
Send booklet "Your Future in the New World of Electronics" and course outline. CHECK \square TV, FM \& Advanced AM Servicing \square Aeronautical Radio Engíneering FIELD OF Practical Television Engineering
GREATEST Broadcast Radio Engineering (AM. FM, TV)
INTEREST Practical Radio EngineerIng
Name
Streef
Cify.
Check \square Residence School \square G.I.

CORONA FREE HVO-X7

FLYBACK TRANSFORMER

Merit's famous HV07 is now treated to a miracle-tough, new non-hygroscopic insulation. Liquid-molded, this latest development in insulating materials encloses the high voltage winding, is impervious to moisture and high humidity and forms a watertight seal for the high voltage lead. Unaffected physically or electrically by cycles of heat and cold, it will withstand operating lemperatures 50% above normal without change. Its high dielectric constant affords maximum protection with minimum distributive capacity.

MERIT COIL AND TRANSFORMER CORP
4425 NORTH CLARK ST., CHICAGO 40

ALFENOL, new alloy of approximately 16% aluminum and 84% iron, may help to produce lighter and better transformers and other "iron-core" components. The new metal has high permeability and low retentivity, is magnetizable by very low currents and holds very little of its magnetism after the current is turned off.

NINETEEN NEW TV STATIONS on the air between March 14 and April 25 brought the U. S. total to 167 59 since the end of the freeze. The five new stations in the v.h.f. bands: KDZA-TV, Pueblo, Col., 3; KFDX-TV, Wichita Falls, Texas, 3; KTTS-TV, Springfield, Mo., 10 ; KFDA-TV, Amarillo, Texas, 10; KTYL-TV Mesa, Ariz., 12 ; and KCJB-TV, Minot, N. D., 13.

The thirteen new u.h.f. stations: KRTV, Little Rock, Ark., 17; WPAGTV, Ann Arbor, Mich., 20; WCOV-TV, Montgomery, Ala., 20; WFTL-TV, Ft. Lauderdale, Fla., 23 ; WCOS-TV, Columbia, S. C., 25; WAFB-TV, Baton Rouge, La., 28; WEEV-TV, Reading, Pa., 33; WICC-TV, Bridgeport, Conn., 43; WKST-TV, New Castle, Pa., 45; WLEV-TV, Bethlehem, Pa., 51 ; WHPTV, Harrisburg, Pa., 55; WKNX-TV, Saginaw, Mich., 57; and WLOK-TV, Lima, Ohio, 73.

EDUCATIONAL TV FAILURE would be "a second American tragedy in broadcasting," according to a speech by ex-FCC Chairman Paul A. Walker at Boston University. Mr. Walker said the educators must meet the challenge of "this new medium of a new day" and unite with citizens in "an aggressive battle" for educational channels. He called attention to "the lost opportunity in aural broadcasting."

Dr. W. R. G. Baker, vice president of G-E and general manager of the company's Electronics Division, said in a speech at Philadelphia that those who claim educational television would provide state thought control "are themselves using one of propaganda's oldest weapons, the catchphrase which damns without sound reason behind it."
Actually, he pointed out, "any mother sitting at home would be able to monitor what is being shown her children at school."

Referring to a report by a New York State temporary commission on educational television which rejected a proposal for establishment of a 10 -station educational television network, Dr. Baker cited criticism which described the commission's report as an "incredibly clumsy and shocking document."

On the question of competition with commercial television stations, Dr. Baker pointed out that "owning a commercial station obviously is not a license to chain people in front of their television sets and hypnotize them from turning to any other channel."
"If education can be made interesting' enough to compete with entertainment . . . some educational programs might even end up as sponsored programs on commercial stations," Dr. Baker concluded.

SELF-REPRODUCING MACHINES are already in the planning stage. Dr. Claude E. Shannon of Bell Telephone Laboratories told an audience at Case Institute of Technology in Cleveland that an abstract model of such a machine has been set up by John Von Neumann, one of the world's leading mathematicians. According to Dr. Shannon, the machine will collect parts from its environment and assemble them into another machine identical with itself. The new machine will then repeat the process, so that by the time each machine wears out, it has already built a new one to take its place.

THREE SCIENTISTS at the University of California have developed an electronic vacuum pump without moving parts. Gases to be removed are first ionized by bombarding them with electrons from an incandescent cathode. A super-powerful electromagnet drawing 5,000 amperes then propels the ionized gases to a cold condensing plate. The new pump can be used alone, or as an auxiliary to existing pumping equipment.

THE CORONATION of Queen Elizabeth II on June 2 has created a tremendous demand for television receivers and radios throughout Great Britain, but rigid Government restrictions on installment sales have shiut out many would-be buyers. One large manufacturer has apparently solved the problem of legally meeting the requirement of one third the selling price on delivery and the balance in 18 months. Customers were offered the opportunity of paying the first third in advance installments up to the end of May, with delivery guaranteed in time for the Coronation.
Would this type of sales promotion work in the United States? We doubt it. When similar credit restrictions were in force here last year many people who could not afford the required down payment were able to get sets immediately through heavy price-cutting and fantastic trade-in allowances on anything from a 1925 -model Atwater Kent to a burned-out toaster.

CONFLICTING STATEMENTS on the dependability of transistor hearing aids have been made by Zenith and Sonotone, two of the largest producers in this field. In announcing that Zenith has suspended production of the newtype aids, president E. F. McDonald Jr. said that despite their superior performance in laboratory models, transistors had failed after only a few weeks service in every aid sold by his company except one. He attributed the failures to body humidity, and stated that Zenith would continue tests with hermetically sealed types.
Irving I. Schactel, president of Sonotone, disagreed with Mr. McDonald, and claimed that thousands of transistor hearing aids sold by Sonotone are giving better service than any previous type made by his company.
(please turn to page 12)

motorlcass ald-direction

 UHE-NHF-FM
MONEY BACK GUARANTEE

to outperform all other antennas using rotor motors on UHF-VHF \& FM

- Guaranteed 10 times more powerful than stacked 10 element Yagis.
- Receives channel 2-83 from all directions without a rotor.
- Broadband UHF-VHF and FM, motorless all direction reception.
- All aluminum flip-out assembly.

The only TV antenna that instantly beams the television set directly to the signal without a rotor. This antenna brings strong UHF \& VHF signals from all directions to weak signal areas instantly . . . with a flick of the nine position switch located near the television set.

MONEY BACK GUARANTEE To out-perform oll other antennos (using rotor motors) on both UHF and VHF, including stacked ten element Yagis, stacked corner and bow-ite reflectors, four bay conicals, etc.
see us af....
THE ELECTRONIC PARTS SHOW, CHICAGO ROOMS 647A \& 648A

ALL CHANNEL ANTENNA CORP. noumam ini

Get yourself on the beam to the BIG MONEY in

 RADIO AND TVThat's the way to become an expert Radio or Television service man. Study the bedrock theories and principles. These are vitally important. Nothing can take their placenot even the most elaborate kits.

Listen to what radioman R. G. Hamlin of Bay City, Michigan, says, "There's no royal road to learning. I am convinced more than ever after examining the lessons of friends who were lured by the alleged short-cut methods of competitors . . . 'understandability' and 'rememberability' are of utmost importance and I.C.S. lessons qualify on both counts."
I.C.S. offers you two new courses in radio and television servicing-one for beginners, the other for experienced amateurs.

The beginner's course, Radio and Television Servicing with training Equipment, is extremely thorough. You get extra texts featuring experiments and job assignments. You get equipment second to none. Matched parts for an excellent 5-tube superheterodyne receiver. Your own profes-sional-quality multitester. A complete single generator kit. High-grade servicemen's tools. "Rider's Perpetual TroubleShooter's Manual." The principles of Television including the most up-to-date developments (VHF and Color TV, for example)
The second course quickly reviews the essentials then goes step by step into advanced phases of Radio and Television, including modern methods of installation and repair. Course contains valuable supplementary material. For example, you get a special book giving characteristics of all tubes used in Radio and Television receivers.
Learn by doing! That's the world-famous I.C.S. method. Thoroughly practical. Completely modern. Success proved. The coupon below brings you full details-on Radio and Television Servicing or any of the more than 400 I.C.S. Courses. Mark and mail it today!

INTERNATIONAL GORRESPONDENGE SGHOOLS

BOX 2884-H, SCRANTON 9, PENNA.

The Man With An Old Set
 He'll be thrilled at the amazing improvement
 you will demonstrate with the B-T Booster set puality at a fraction will show him how to get

of the cost of a new set.

The Man With An Indoor Antenna
He will laugh at his landlord problems when you show him the clear pictures to be had with the B-T Booster ... whether he has a new set or old.

The Man With An Old-Fashioned Tunable Booster

 He will be amazed at the performance and by the new "hands-off" convenience. His wife need no longer complain about the box on the receiver and the extra knobs to tune,

BLONDER-TONGUE LABORATORIES, INC. WESTFIELD, NEW, JERSEY

THE RADIO MONTH

No statement was made by the General Electric Company, who throughout the whole I.R.E. show last spring operated a transistor transmitter in a glass coffee-maker full of boiling water.

WHEN A CAMERAMAN follows the horses, it's merely an occupational disease; but when the horses follow the cameraman, it's an invention. Eric A. Black, of Red Bank, N. J. has just received U. S. Patent No. $2,633,054$ on an aerial cableway for racetracks. A car suspended from the cableway carries a TV or movie camera and crew. Travelling just ahead of the horses at all times, it not only lets viewers see the race in complete detail, but provides track officials with an unquestionable, permanent record where fouls are claimed.

GANO DUNN, internationally famous engineer, financier, and educator, died April 10 in New York City at the age of 82 . The first man in the United States to receive a degree in electrical engineering, Mr. Dunn's career spanned almost the entire history of electrical power transmission, communications, and engineering education in this country.
Mr. Dunn was president of J. G. White Engineering Corp., a director of RCA and NBC, chairman of trustees and former president of Cooper Union in New York City, and a director or trustee of many other industrial, financial, and educational institutions. He was a Fellow of the Institute of Radio Engineers, honorary secretary for the United States of the I.E.E. of Great Britain, a member of the American Academy of Aits and Sciences, the American Society of Civil Engineers, and had received many honorary degrees in this country and abroad.

DR. RONALD W. GURNEY, noted British-born electronic physicist whose pioneer research on semiconductors was one of the factors which led to the development of the transistor, died suddenly on April 14th in New York City. Dr. Gurney had made his home in the United States since 1941, conducting research in ballistics during World War II at the Army's Aberdeen Proving Grounds, and later as research professor at the University of Maryland.

NEW LOW-CUST COMPOUNDS

 of aluminum, antimony, and other common metals may revolutionize transistor manufacture by replacing germanium as the basic material. The new semicolductors have already proved themselves as rectifiers, and further tests are being carried on at the Na tional Bureau of Standards, Bell Telephone Laboratories, and Battelle Memorial Institute in Columbus, Ohio.The aluminum-antimony compound may even outperform germanium at high operating temperatures, and as for cost-aluminum and antimony sell for less than 50 cents a pound. A pound of germanium costs $\$ 350$!

(0) TUMES more powerful THAN STACKED 10 ELEMENT YAGIS

PHILCO

All-Purpose TV Antenna

NEWV Design and Principle

By far the most powerful TV antenna on the market today... a sales value unsurpassed at its popular price. With the mere flip of a switch this exclusive all-purpose Philco antenna without rotor or moving parts of any kind instantly and automatically beams the set to the best possible signal for both UHF and VHF reception. No attenuators are necessary in strong signal areas since an off position of the switch will automatically attenuate the signal. Available in preassembled aluminum dowel reinforced elements of single bank and stacked arrays for metropolitan and fringe areas at your Philco distributor now.

Up to 22.3 DB Gain over Tuned Dipole

DB GAIN OVER A TUNED DIPOLE CUT FOR EACH CHANNEL FREQUENCY

Single Array
 Gain Chart

using
different
different
$\begin{array}{llllllllllllll}60^{\prime \prime} & 5.8 & -2.2 & 9.6 & -1.0 & -2.0 & 1.5 & -4.0 & 10.3 & 4.0 & 15.4 & 7.0 & 15.5\end{array}$

between	$98^{\prime \prime}$	2.5	8.0	9.5	-4.5	17.0	6.0	2.0	4.0	1.0	10.0	7.0

$\begin{array}{lllllllllllllll}\text { two single } & 114^{\prime \prime} & 21.0 & 19.0 & 7.4 & 22.3 & 0.0 & 6.0 & 8.2 & 10.4 & 11.5 & 14.0 & 14.1 & 14.3\end{array}$
$\begin{array}{lllllllllllllll}\text { arrays } & 122^{\prime \prime} & 7.4 & 17.0 & 13.4 & 2.5 & 21.5 & 8.5 & 17.3 & 16.2 & 12.1 & 14.8 & 15.6 & 10.5\end{array}$
The above tests were made using a 40 -foot lead-in. However amazing results have been obtained on installations using a lead-in up to 150 feet without any appreciable difference in gain. These tests were made in real fringe areas.
For maximum gain in outer fringe areas, orient the antenna for the weakest For maximum gain in outer fringe areas, orient the antenna for the weakest

ALL DIRECTION

DISTRIBUTOR OR MAIL COUPON FOR DETAILS

PHILCO CORPORATION, Accessory Division

Allegheny and A Streets -
Philadelphia 34, Pa. !
Please send me information about the Philco All Purpose\square
Antenna, with current trade price list.\square
NAME. ■
STORE NAME -
CITY ZONESTATE -
Please check in space below
am a TV Serviceman \square

E-V adds the MAGIC TOUCH to to reception

 TV CONVERTER

Adds all UHF Channels to VHF Sets

Non-slip micrometer type tuning system* provides smooth, accurate, continuous tuning of all UHF channels 14-83. No band switches, strips or coils. New high-efficiency low-loss circuit. Operates with either separate UHF and VHF antennas or on all-channel (2.83) antenna. Adequate shiclding. One control turns Converter and TV set "on" or "off" and switches to correct antenna. Utilizes channels 5 or 6 of VHF TV set as Intermediate Frequency. Does not affect VHF reception.
Installation is simple-connect to antenna input of VHF TV set and just plug in. For 105.125 volts, 50.60 cycles AC. Housed in small, attractive dark brown cabinet, $73 / 4^{\prime \prime} \times 5 \frac{1}{4}{ }^{\prime \prime} \times 6 \frac{1}{4}$ ".
Completely self-contained, ready for installation.
MODEL 3300. List Price, $\$ 39.50$

ELECTRO-VOICE, INC.
421 CARROLL STREET - BUCHANAN, MICH.
Export: 13 E. 40 th St., New York 16, U.S. A. Cobles: Arlab

BAROMETER of the PARTS INDUSTRY

During April, 64 of the leading 400 manufacturers of Radio-Television-Electronic parts and equipment made changes in their lines. Actually there was a decrease in "change activity" as compared to March.
In price revisions by the number of manufacturers and products affected, the following summary illustrates the comparative trend for the months of March and April.

	No. of Manufacturers	
	March	Aprit
Increased prices	23	22
Decreased prices	18	8

	No. of Products	
	March	April
Increased prices	350	947
Decreased prices	179	406

For a summary of the most active product categories, see the following tables:

Product Group	Increased Prices	Decreased Prices	New Products	Discortinued Products
	No. of No. o: Mfrs. Products	No. of No. of Mirs. Products	No. of No. ol Mirs. Products	No. of No. of Mfrs. Products
Antennas \& Access.	$430 * *$	$12^{* *}$	14 124**	4 147*
Capacitors	$131 * *$	3 404*	4778^{*}	$2 \quad 57$ **
Conirols \& Resistors	$0 \quad 0$ **	$0 \quad 0$ **	1 1**	1 1**
Sound \& Audio Prod.	2 48*	$0 \quad 0$	11 65*	12 84*
I'est Equ:pment	5 35*	$0 \quad 0^{* *}$	$6 \quad 16^{*}$	5 y*
Transformers	18^{*}	$0 \quad 0^{* *}$	$28^{* *}$	$0 \quad 0$ **
Tubes	6 85**	3 14*	9 5*	4 21*
Wire \& Cable	3 6 3^{*}	146^{*}	$11^{* *}$	27^{*}
* Increase over March** Decrease from March $\left\{\begin{array}{l}\text { * Increase over March } \\ \text { ** Deerease from March }\end{array}\right.$				
COMMENT: Showing only a slight decrease in the number of munufacturere reporting changes since last month, over-all product activity continues to be heavy. While tube, anterna, and sound manufact urers once augin dominate this "change activity" scene, we note that several capacitor and wire manufacturers have made considerable revisions in their lines.				

Merchandising and Promotion

I.D.E.A., Indianapolis, has prepared a colorful broadside which it mailed to distributors of its Regency v.h.f. boosters. A letter describing the company's

Earl H. Kirk shows Regency sales aid.
Card-of-the-Month campaign accompanied the broadside. Each card will contain a pertinent suggestion on new methods of realizing greater profits on Regency boosters.

Tel-A-Ray Enterprises, Inc., Henderson, Ky., has prepared a u.h.f. antenna selector indicating the various types of Tel-A-Ray u.h.f. antennas for good reception at different distances.

Sylvania Electric Products is offering radio-TV service technicians a personalized home calendar for 1954. The cal-
endar, which serves as a Christmas greeting and features recipes and home care hints, may be imprinted with the service technician's name, address, and phone number.

Walter L. Schott Co., Los Angeles, has built its new distributor promotion around the theme, "When you buy, sell, or install Walsco, it's like money in the bank." In addition to 150,000 mailing pieces made available to distributors, three-minute recordings and miniature banks are also being used.

Channel Master Corp., Ellenville, N. Y., designed a new package for its Katy-B television booster which doubles as a two-color pop-up counter display.

Electro-Voice, Inc., Buchanan, Mich., launched a new program to help service technicians cash in on the huge phono-cartridge replacement market. (Please Turn to Page 18)

KNIGHT PORTABLE RADIO KIT
Build this powerful 3-way superhet portable for AC, DC or battery operation. Tunes $535-1650 \mathrm{kc}$ broadcast band; has built-in antenna, PM speaker, printed audio tenna, PM speaker, printed audio
circuit, handsome carrying case. circuit, handsome carrying case.
Easy to assemble from illustrated Easy to assemble from illustrated
manual. High-quality kit includes manual. High-quality kit includes teries). Shpg. wt., 6 lbs.
83-730. Only
$\$ 18.75$ Battery Kit.
$\$ 3.64$

TY BOOSTER BARGAIN

Famous Standard Coil printed circuit TV booster at less than half original price. Provides uniform gain on all 12 VHF channels. Easy to tune; use with indoor antenna in primary areas, with outdoor antenna in near-fringe areas. Improves reception markedly. For 110-120 v., 60 cy . AC. Shpg. wt., 4 lbs.
97-233. While they last, Only.
. $\$ 9.95$

TRAY-ELECTRIC SENIOR COMVERTER
Ultra-compact 60 cycle converter for changing 6 volts DC to 110 volts AC. Capacity: 30 watts continuous, 40-45 watts intermittent. Simply plugs into auto cigarette lighter. Permits mobile use of broadcast and SW radios, recorders, dictating machines, fluorescent lamps, etc. machines, fuorescent lamps, etc. Fully fil 31/4 lbs.
so-272. On

Only 83-122.Hi-FrequencyProbe forA Crange to $200 \mathrm{mc} \$ 5.95$

ALLIED RADIO

in ALLIED'S latest

 Catalog \& Supplement! freie: send for both

KNIGHT SELF-CHARGING PORTABLE
Deluxe superhet portable for AC, DC or battery operation. With battery "Rejuvenator" circuit which extends normal " B " battery life 2 to 4 times! Covers full tery life 2 to 4 times! Covers full amp, loop antenna, AVC, $5^{\prime \prime}$ PM amp, loop antenna, AVC, 5 PM speaker. Attractive carrying case,
$10 \times 125 / 8 \times 43 / 4$. Complete with tubes, less batteries. 9 lbs. 6K-718. Only.
$\$ 35.75$ 80-652. Battery Kit $\$ 4.36$

Wonderfully efficient; uses conical element and reflector for VHF and "bow-tie" for UHF. Equipped with printed circuit antenna coupler for excellent signal transfer into single transmission line. Easy to install. (Less mast and 300to instau. liness mast and $300-$ ohm twin line.) Shpg. Wt., $\mathbf{9 8 - 3 6 8 \text { . Only } ~} \$ 11.20$

FINMEY 400 A
UHF-VHF

ANTENHA

New! Double co. lateral UHF-VHF antenna featuring elements for high gain and direcele ivity, with superior and direcnoise ratio. Superb for fringe-area reception-good for VHF up to 150 miles or more. Rugged; corro-sion-proof; pre-assembled, lightweight. Requires $10-\mathrm{ft}$. mast and 300 -ohm twinline. 14 lbs. 97-104. Only.
.$\$ 32.34$

WELLER SOLDERING GUNS

Squeeze the trigger-you're ready to solder in 5 seconds. Latest heavy-duty, instant-heat gun; with 2 spotlights that light up with 2 spotlights that light up working area
46-642. Single-heat, only . . \$9.75 46-642. Single-heat, only . . $\$ 9.75$

PET $1 / 4^{\prime \prime}$ DRILL VALUE
Precision gear-type chuck drill with pistol grip. Instant-release lock-type trigger switch built into grip. Forced ventilation; runs cool. Speed: no-load, 1600 rpm ; fullload, 900 rpm. Capacity: $1 / 4^{\prime \prime}$ in steel, $1 / 2^{\prime \prime}$ in hardwood. 6-ft. cord. For $110-120$ v. AC or DC. 41 lbs . 46-280. Only. $\$ 17.21$

EqUIPTO "LITTLE GEM" CABINET
New! Drawer cabinet for small parts. Contains 4 drawers, with dividers for 48 compartments (dividers adjustable on $11^{\prime \prime}$ centers). Each drawer $11^{\prime \prime} \mathrm{h}, 11^{\prime \prime} \mathrm{w}$, 11"d. Cabinet overall, $61 / 2 \times 11 \times$ 11:. Olive green baked enamel finish. Shpg. wt., 20 lbs. 86-066. Only.
.$\$ 17.80$

TAP-A-LINE

New type electrical line outlet, powering as many as 8 separate appliances from any wall outlet. Plastic cased; 12" long, $1^{\prime \prime}$ square. With $6-\mathrm{ft}$. cord and plug. Rated 1000 watts. $11 / 2 \mathrm{lbs}$.
52-636. Only.
. $\$ 1.47$

UNIGHT YT VOLT-OHM-MILLIAMMETER KIT

Terrific Value! Response to 2.5 mc . Bridge-type circuit; 1% resistors. Input res.: DC, 20 megs; AC, 1.5 megs. 41/2" meter. Ranges: AC p-to-p volts, 0-8-28-84-280-840-2800; AC rms \& DC volts, 0-3-10-30-100-$300-1000$; DC ma.0-3-10-30-100-300-1000; res. $0-1000-$ $10 \mathrm{~K}-100 \mathrm{~K}$ ohms \& $0-1-10-1000$ megs; cap., $005-.5$, $.05-5, .5-50,5-500,50-5000 \mathrm{mfd}$. With tubes, leads, case, instructions. For $110-120$ v. DC or 60 cy. AC. 83-120. Only
83-121. Hi-V Probe; extends DC range to $30 \mathrm{KV} \$ 6.95$

ALLIED RADIO CORP., Dept. 2-F-3 833 W. Jackson Blvd., Chicago 7, Ill.

FREE

Catalog and

Supplement
\square Enter order for
\qquad
$\$$ enclosed

Name

Address
City__ Zone____State

devoted exclusively to electron tubes

consist of • more than $1,000,000$ sq. ft. of manufacturing area - more than 10,000 skilled tube craftsmen

- backed by 30 years of tube engineering, development and production experience

Raytheon's newest plant at Quincy, Massachusetts is expressly designed to economically manufacture 24 inch and larger

Raytheon Picture Tubes. It will employ the very last word in modern engineering and manufacturing techniques. It will be devoted exclusively to the making of tubes worthy of the Raytheon reputation for quality and dependability.

With Raytheon Radio and Television Tubes you are Right . . . for Sound and Sight.

RAYTHEON MANUFAGTURINGCOMPANY

 Receiving Tube DivisionNewion, Mass., Chicago, III., Atlanio, Ga., Los Angeles, Calif.
Excellenco in Eiledronios

VOL. 1. AUTO RADIO SERVICE MANUAL
Covers over 100 models made from 1946 to 1949 by 24 manufacturers. Each receiver is completely covered in uniform format; includes schematics, chassis photo views, replacement parts data, service hints, etc. All data based on actual lab analysis. 396 pages, $81 / \mathbf{1}^{\times 1} \times 11^{\prime \prime}$. ORDER AR-1. Only.

VOL. 2. AUTO RADIO SERVICE MANUAL
Covers 60 different chassis (40 models) used in 1948, 1949 and 1950 auto radio receivers. Authoritative, complete service data that makes your work quicker, easier and more profitable. 288 pages. $81 / 2 \times 11^{\prime \prime}$
ORDER AR-2. Only
\$3.00

VOL. 3. AUTO RADIO SERVICE MANUAL Covers 47 different chassis (80 models) used in 1950, 1951 and 1952 auto radio receivers. Absolutely the most complete, accurate and easy-to-use data avail-able-uniform and practically presented to make you an expert on the repair of any auto radio. 288 pages. $81 / 2 \times 11^{\prime \prime}$.
ORDER AR-3. Only
\$3.00

SPECIAL OFFER!

All 3 Volumes, Yours for Only $\$ 9.95$ Save on the Complete Librorysee your PHOTOFACT Distributor

HOWARD W. SAMS \& CO., INC.

[^1]The program, "Your Profit Key to " 53 ," offers an all-metal six-unit cartridge

dispenser, a Professional Phonographic Service decal and a Set Model PhonoCartridge Replacement Guide with every purchase of six Electro-Voice cartridges through E-V distributors.

Permoflux Corp., Chicago, designed a new point-of-sale display carton as a promotional aid for the Permoflux telephone pickup attachment which picks

up both sides of a telephone conversation without electrical connection to the phone. The new display is printed in three colors and holds six pickup units.

John F. Rider, Publisher, Inc., New York City, is offering purchasers of its book "High Fidelity Simplified" an opportunity to buy a special Columbia LP high-fidelity test record. The offer expires September 1st.

The RCA Victor Tube Department, Harrison, N. J., is pointing its springsummer advertising campaign toward the establishment of local RCA battery dealers as radio battery and service headquarters for portable-radio owners. National radio, TV, and magazine advertising will be used as well as in-store display material and a variety of sales aids including a battery tester and display unit.

RCA's new battery-tester sales aid.

New Plants and Expansions

United Motors Service Division of General Motors Corp., Detroit, is planning an expanded distribution of radio and TV service parts and additions to

Executives view Delco u.h.f. antenna,
these lines, according to W. N. Potter, general manager of the division. TV antennas and picture tubes will be marketed under the Delco name aud sold through electronics parts distributors. Formerly, Delco radio parts were sold almost exclusively through automobile parts distributors.

International Resistance Co., Philadelphia, has begun production in its new plant in Asheville, N. C. Various types of volume controls for radios, TV sets, phonographs, test equipment, and military and other devices will be made in the new $\$ 200,000$ plant.
Quam-Nichols expects to be in full production in its new 75,000-square-foot plant on Chicago's South Side by midJuly. The new plant has more than double the productive capacity of the old plant.

Westinghouse Electric Corp. recently held the official public opening of its new Electronic Tube Division plants in Bath and Elmira, N. Y.

Permo, Inc., Chicago, now maintains a large warehouse of Fidelitone and Permo-Point products in Los Angeles, according to Gail S. Carter, vice-president.

Krylon, Inc., has moved its executive and sales offices to 1422 Chestnut St., Philadelphia 2. Plant, warehouse, and general offices remain at 2038 Washington Ave., Philadelphia $46 . \quad$ END

Two heads are betfer than one!

 amazing newis the most sensitive fringe-area antenna ever developed for UHF!

TWO DIPOLES-HIGHER GAIN

The two dipoles of the Twin Corner Reflector provide TWICE as much gain as standard-type Corner Reflectors!

This two-dipole construction is an original Channel Master idea which successfully combines two separate Corner Reflectors into ONE ANTENNA STRUCTURE - requiring ONE simple installation.

This 2-in-1 combination gives you:
... the economy of one antenna.
. . . the convenience of one antenna.
... BUT the combined performance of TWO separate high gain antennas.
Model No. 406 furnishes far better picture quality - at far greater distances - on every UHF channel.

Eliminates UHF's "Twin Terrors." 100% vibration-proof construction prevents picture flicker. "Free space" terminals prevent dirt and rain water from shorting out the picture.

2 antennas in 1

GHANH M MASTH engineering pays off on UIII!

The Twin Corner Reflector furnishes the performance of 2 antennas because it reolly is 2 separate antennas stacked sid. by side
into 1 simple structure with iust o single down. lead to the set.

up to 16 DB gain

\[

\]

horizontal polar pattern (relative voltage)

[^2]
At Last! a Yacl for the ENTIRE LOW BAND!

A high-low Futuramic combination is the most sensifive array ever designed for all-channel VHF reception. Just combine models 1173 and 1126 .

Now - 6 great Futuramic models, designed for every reception orew:

model no.	channels coyered	hist price
1173	$7-13$	32913
1126	2, 3. and 4	
1125	2,3, 4, and 5	
1138	2, 4, 5, and 6	$3 \mathrm{ALO}^{7}$
1148	4, 3, and 6	
1126	2, 3. 4, 5, and 4	

Designed for service TODAY and TOMORROW in these 3 booming VHF markets:

Areas in which present VHF stations are changing channels fon the Low Band).

The Futuramic Yagi provides betier reception than conventional Yagis on the present channels - and when the shift occurs this superior reception will continue on the new chennel WITHOUT INTERRUPTION. And you can make your change-over installations NOW.

Areas in which a new VHF station is being added to the present ane (on the Low Band).

The great number of single channel Yagis now in use will not bring in the new channel. If an additional Yagi is installed it will have to be tied into the present installation with separate leads and a switching system. However, one Futuramic will do the job of BOTH antennas - at bower cest - with better results on BOTH channels.

Areas served at present by two or more VHF stetions on the Low Eand. You no longer have ta compromise between conventional broad band antennas, and separate Yagis for each chonnel. The Futuramic gives you the full advantages of both. It combines highest gain and sharpest directivity with simple, econemical installation.

CHANNEL MASTER'S
Newest

Completely covers every low band channel2 through 6

Now
the expraordinary high gain of a Yagi ...
the razor-shorp directivity of a Yagi . . . Not on just one channel - but clear across the entire Low Band!

MORE
IRANING TO FIT YOU FOR THE BETTER PAY JOBS
Thousands of new Johs will open up right in ybur own state now that the government has lifted restrictions on new TV stations. My simple, successful methods bave helped hundreds of men - most of them with NO PHEVIOUS TRAINING find places in America's booming TELEVISION and Filectronies Industries. You tou an get the suecess and happiness yon always wanted out of life within montms... studying at home ... as I train you to hecome a full-fledged TV TriCHNICIAN. Many of my students make as rauch as $\$ 25.00$ w week repairing Radic $T V$ sets in their spare time while learning . . . pay their entire training almost from the very beginning from spare time earnings... start their own proftable service business.
But don't stop atter I qualify you as a TV Technician. "although right there yos ran chouse finating careers? continue dozens of you - AT NO F:XTHA COST - to qualify for ewen better pay in the BETTHH JOBS that femand FCC icenses, with my.

FREE FCC COACHING COURSE

 Giver at no extra cost atter tv Theow and Practice is completed.

NOWI advanced

 fm-tV trainingIf vizu have previous Armed Forces or Civilan radio experlence-my ADVANCED COUPSE cun save you months of training. Full theary and practical training complete with kits, including BIG SCREEN TV RECEIVER and FREE FCC License
Coaching Course.

FREE EMPLOYMENT

My vocntlonal adiviser wlll help you obLain good-paying job in the locality of your tholce.

MORE value!

YOU GET A ROUND TRIP TO NEW YORK CITY AT NO EXTRA COST FROM ANYWHERE IN THE U.S, OR CANADA - I pay your way to New York and return, PLUS 2 FREE weeks, 50 hours of advanced instruction and shop training at the PIERCE SCHOOL OF FADIO \& TEIEVISION. You use modern electrontes equipment, including student-operated TV and Radio stations. You go behind the scenes of New York's And I give you all this AT NO EXTRA Cost: (Applies to complete Radio-TV course only.)

Only RTTA makes this amaxing offer. 80TH FREE! New lllustrated Book and Sample Lesson. Learn How My Simple Methods
Make
Easy!

VETERANS!量食

MY SCHOOLS FULLY APPROVED TO TRAIN VETERANS UNDER NEW G.I. BILL! If discharged affer June 27, 1950 - CHECK COUPON BELOW! Also approved for RESIDENT TRAINING MAIL COUPON TODAY! tht^{2} in New York Cify ... qualifies you for

GRADUATES GOOD PAYING JOBS

Many others working at NBC, RCA, CES, DuMont, Philco, Emerson, Admiral and ther leading firms. full subsistence allowance up to $\$ 160$ per month.

NO SALESMAN WILL CALL!

Mr. Leonard C. Lane, President
RADIO-TELEVISION TRAINING ASSOCIATION 1629 Broadway, Radio City Station

Dear Mr. Lane: Mail me your NEw SAMPLE LESSON that will shour NEW FREE BOOK and MONEY in TELFEISION. I understand I am under no obligation and no salesinan will call.
(PLEASE PRINT PLAINLY)
Name
Age
\qquad
VETERANSTested in: R Radio-TV \square Adyanced FM-TV. Choice: choice: \square Home Study \square Resident study.

RADIO-TELEVISION TRAINING ASSOCIATION
162 C Broadway, Radio City Station, New York City 19, N. Y. lICENSED BY THE STATE OF NEW YORK

ENTER

RAYTHEON'S

TRANSISTOR APPLICATION

CONTEST!

Here's the chance-of-a-lifetime to win a big cash prize while gaining valuable "know-how" on the latest electronic development - transistors. Raytheon is offering 17 cash prizes to the seventeen contestants who produce the most ingenious applications of the Raytheon CK 722 Junction TRANSISTOR.
Here's all you have to do! Simply build equipment that uses one or more Raytheon CK722 Transistors which you have purchased from your local Raytheon Tube Distributor. Then send a photograph of the unit you have built, a completed official entry blank and a 500 word minimum, 1000 word maximum constructional article on the equipment to Raytheon, P. O. Box 6, Newton 58, Mass. All entries will be carefully judged and prizes will be awarded on the basis of ingenuity of application. Duplicate equipment to be judged on basis of descriptive material. Decision of the judges is final and all entries and their ideas become the exclusive property of Raytheon.
Here's how to enter! Go to your nearest Raytheon Special Purpose Tube Distributor. Get your official entry blank which must accompany each entry and which contains complete contest rules or get the official entry blank by writing directly to Raytheon, P. O. Box 6, Newton 58, Mass. Enter today the contest closes on Midnight August 31, 1953.

For opportunities within your reach

Good-pay jobs. A business of your own.

Opportunities for good-pay jobs in Television are within your reach when you study TV Servicing by the RCA Institutes Home Study Method. Or perhaps you would like to start a TV Service business of your own.

If you are not satisfied with the way your future now stacks up, see how easily
you can change the course of your career. RCA Institutes Home Study Course in TV Servicing is helping thousands of other people to better jobs. It can help you. Right now thousands of opportunities are going begging. There is a critical shortage of trained TV servicemen. This is your big opportunity.

Easy-to-understand,

 illustrated lessons

The entire course is divided into ten units of several individual lessons. You study them at home in your spare time. Lesson-by-lesson you learn the theory and step-by-step procedures of installing TV antennas, of servicing and trouble-shooting TV receivers. Hundreds of pictures and diagrams help you understand the how-it-works information and the how-to-do-it techniques. You will be amazed how easily you absorb the knowledge of each lesson, how quickly you train yourself to become an experienced technician.

Experienced engineers and faculty prepared the course, grade your lessons

The RCA Institutes course was written and planned by instructors with years of specialized experience in training men by home-study and resident-school methods. The course embodies RCA's background of television experience plus knowledge gained in training several thousand technicians. A study of the course parallels an apprentice's training. Your lessons are carefully examined and accurately graded by friendly teachers who are interested in helping you to succeed.

One of the leading and oldest

 Radio-Television training schools

Founded in 1909, RCA

 Institutes, Inc. has been in continuous operation for the past 44 years. Its wide experience and extensive educational facilities give students, just like you, unsurpassed technical training in the highly specialized field of radio-television-electronics.RCA Institutes is licensed by the University of the State of New York . . . an affiliate member of the American Society for Engineering Education . . . appraved by the Veterans Administration . . . approved by leading Radio-Television Service Organizations.

It costs so little to gain so much

RCA Institutes makes it easy for you to take advantage of the big opportunities in TV Servicing. The cost of the TV Servicing Home Study Course has been cut to a minimum. You pay for the course on a pay-as-youlearn unit lesson basis. No other home study course in TV Servicing offers so much for so little cost to you.

RCA Institutes conducts a resident school in New York City offering day and evening courses in Radio and TV Servicing, Radio Code and Radio Operating, Radio Broadcasting, Advanced Technology. Write for free catalog on resident courses.

SEND FOR FREE BOOKLET-Mail the coupontoday. Get complete information on the RCA INSTITUTES Home Study Course in Television Servicing. Booklet gives you a general outline of the course by units. See how this practical home study course trains you quickly, easily. Mail coupon in envelope or paste on postal card.

MAIL COUPON NOW!

RCA INSTITUTES, INC., Home Study Dept. RE-653 350 West Fourth Street, New York 14, N.Y.

Without obligation on my part, please send me copy of booklet "RCA Institutes Home Study Course in Television Servicing." (No salesman will call.)
(B) \qquad

CLOSED-CIRCUIT TELEVISION

. . A new booming field for video...

By HUGO GERNSBACK

CLOSED-CIRCUIT television has been with us for a number of years. We have mentioned the subject on this page several times in the past and we will attempt to give as complete a list of the new uses of television as is feasible in this limited space.

General Sarnoff, Chairman of the Board of the Radio Corporation of America, recently stated: "The dimensions of industrial television may surpass the growth in broadcast television we are now witnessing."

By far the most publicized use of closed-circuit television is that for educational purposes in colleges, universities, and other institutions of learning. This new field is bound to grow by leaps and bounds, and while it will never supplant the classroom, there is a great future ahead for it.

Sarnoff is also of the opinion that television in the office, factory, and home will rank soon with voice communication between rooms in the same house and offices in the same building. He is of the opinion that when the cost of camera attachments becomes low enough to permit their use in homes, the television receiver will become the control center of the home. By turning a switch, the receiver, instead of showing broadcast programs, will be used to view the children asleep or at play in the yard or in the nursery, to view the cooking in the kitchen, and to see callers before the door is opened.

Industrial television has already achieved many wonders. Seventeen years ago, the writer predicted one of the important improvements in the art, namely stereoscopic television, now popularly called 3-D (three-dimensional viewing)*. Quietly, without fanfare, it has already arrived. The Allen B. Du Mont Laboratories, Inc., are making a stereoscopic television camera which is used at the Argonne National Laboratories in atomic research work. The stereoscopic camera is focussed on a mechanical manipulator used to work with radioactive "hot" materials. At a safe distance away, a chemist views a stereoscopic image on a receiving screen through spectacles fitted with polarized glasses as he co-ordinates the mechanical manipulator. The receiver which he watches has two identical pictures side by side on the same screen. This, with his polarized glasses, gives stereoscopic vision at a distance.

An accountant with pencil poised now can watch freight yards from his office with a camera mounted in a railway yard. Thus, he can check off the serial numbers on the freight cars as the train passes by the camera.

Railroads now also use television to guide switching of incoming and outgoing trains.

An electronic eye can now see into a furnace and observe fuel combustion and do away with smoke pollution.
In London, England, airports can now check on taxiing planes and planes aloft by means of television.

At the New York Savings Bank, customers' signatures and balance cards are viewed by a television camera. The result is flashed to the teller's cage and he instantly sees the customer's balance. He thus can verify the customer's signature and tell whether a check might overdraw the * Oct. 1936 issue Short Wave Crapt.
account. This system greatly speeds banking transactions.
The British use underwater television cameras routinely in locating sunken ships. The camera is remotely controlled. It can be swung through a variety of angles for horizontal and vertical shots, or shots of any given angle.

During the 1952 Radio Exhibition at London, a radiocontrolled crane was operated by an engineer using television. He saw only the crane on a screen; all operations were performed by remote-control.

Operations performed by surgeons via television are becoming commonplace. A new idea however for lecturing purposes by the medical profession now makes it possible to bring home anatomical details by throwing a greatly enlarged television image on the screen. A recent English demonstration showed only a live human eye, the pupil of which was enlarged to such an extent that it was bigger than the lecturer. Standing before the screen he used a long lecturing stick to show the eye's pathological points to the assembled physicians.

Supervisors of factories can now view almost any operation in any plant for which they are responsible. Thus, for instance, if he wishes to see plant No. 2, fifth floor, center of the Stamping Department, all the supervisor has to do is flip a switch. If he wishes to see Plant No. 8, two miles away, and wants to watch a certain operation on the assembly line, he simply flips another switch. In this manner the supervisor or operating manager can visit any part of a huge factory, and can cover more ground in fifteen minutes than he previously could in 3 hours.

It is also possible now for salesmen in widely scattered areas to see a new product demonstrated and familiarize themselves with all its important points.

John Gallagher, Industrial Television Sales Development Coordinator of Du Mont, recently spoke at length on closed-circuit television. Among other things, he stated that such a system can now be used to guard banks, industrial plants, and department stores, to supervise commercial operations at a distance, to protect documents and signatures, to control traffic in tunnels and crowded highways, and to read all types of meters and gauges on boilers on industrial installations.

It will also soon be possible for publishers to see final proofs and check corrections via closed-circuit television. One of the time-consuming nuisances in publishing today is that proofs must either be transported from the distant printer to the publisher. Or the editor or editorial worker must go to the printing plant. By closed-circuit television, it will be possible to read proofs from a television screen and verify corrections, with vast saving of time.

Closed-circuit video will really start booming when color television becomes of age. This is particularly true in surgery and many manufacturing processes where color control is of vast importance, such as textiles, foods, and color printing, to mention a few. Color television now being in the last stages of development, it is certain that in the next ten years industrial television will rise to unimagined heights.

New boosters from OLD TUNERS

Convert junk-box front ends

to cascodes-and into cash By JOSEPH MARSHALL

Fig. 1-Before and after. Unretouched photos of the picture received without (left) and with (right) a home-built cascode booster made from a $98 ¢$ tuner.

THE cascode circuit is unquestionably the biggest improvement in high-frequency amplifier design of the past decade. Incorporating it in the front-ends of TV receivers has vastly improved their performance in nearfringe areas; but it has also brought problems in the far-fringe areas. The new tuners work very well where the signal strength is great enough to give good contrast without a booster, since the "snow" of the cascode circuit is small enough not to be annoying. But trouble ensues when a booster must be added, for unless the noise figure of the booster is at least as good as that of the cascode front-end, a stronger picture is obtained only at the expense of more snow.

Most pre-cascode boosters have an inferior noise figure. It takes a booster with a cascode input stage to improve the over-all picture quality. Technical magazines have had articles describing many types of single-channel boosters; but there have been no descriptions of cheap home-built boosters for all-channel performance, for the simple reason that the headaches involved in winding and switching the multiplicity of coils are enough to try the patience of a whole factory engineering staff, let alone a lone experimenter or amateur. But in the past year the near-obsolescence of pre-cascode tuners has thrown many varieties of front-ends on the market at bargain prices-some as low as $\$ 1.00$ and most of them under $\$ 10.00$. Many of these can be rebuilt easily into excellent all-channel cascode boosters, with performance at least as good as high-priced commercial versions. The author has constructed several in the past few months.

The two unretouched photos in Fig. 1-taken within a few seconds of each
other-show the improvement on channel 2 effected by the addition of one of these boosters at a distance of 140 airline miles from the transmitter. Although the receiver did not have a cascode r.f. stage, the improvement with the new-style tuner is nearly as dramatic. The booster responsible for this performance was made in a total of three hours out of a tuner of unknown make purchased from Burstein-Applebee for 98 . We have also made very successful boosters out of Du Mont Inputuner front-ends. Although we have not actually converted one, old models of the Standard Coil tuner should also make very satisfactory boosters.
Most conversions are simple and do not take more than a few hours of work. The re-wiring is practically all confined to the tube sockets; the tuned circuits are not disturbed. In most cases the only additional parts needed are a pair of $100-\mathrm{ohm}$ resistors and possibly two new tubes. The circuit is not at all critical and if reasonable care is taken in construction no trouble should follow. Adjustments are also simple, since the original alignment is not disturbed much.

Choosing the tuner

Some of the old tuners had push-pulltriode r.f. amplifiers and tuned-line resonant circuits. Although it is possible to convert these, I have not tried it, and I do not recommend the attempt except to those who have had considerable experience fooling around with v.h.f.-amplifier circuits. The best types are those with a pentode r.f. stage and a 656 mixer-oscillator. All the Du Mont Inputuners are convertible into extremely good boosters, whether they have pentode or grounded-grid-triode r.f. stages. In fact, any tuner that has
parallel-tuned antenna and output circuits, and two 7 -pin miniature sockets fairly close together, will work in this circuit.

The circuit

The circuit of Fig. 2 uses a 6AK5 (though a 6CB6 will probably work as well) and a 6J6 in a direct-coupled cascode circuit. The new twin-triodes ($6 \mathrm{BK} 7-\mathrm{A}, 6 \mathrm{BQ} 7-\mathrm{A}$, and $6 \mathrm{BZ7}$) would also work here; but unfortunately they call for replacing the 7 -pin sockets with larger 9 -pin sockets and this involves real labor. This two-tube circuit works even better, and requires no physical modification of the tuner chassis. The circuit is actually very simple, despite the presence of coils in unfamiliar places.
The cascode circuit combines a grounded-cathode-triode input section and a grounded-grid-triode output section. For several reasons this combination produces an incredibly good combination of low noise and high gain. Its high input impedance permits the use of an impedance-stepup transformer in the antenna circuit. This gives a better input-signal to tube-noise ratio, and the gain becomes very much higher, approaching-and in some cases sur-passing-the gain of a pentode. The grounded-grid 6J6 loads the first section very heavily, reducing the gain of the 6AK5 to unity or a little better, eliminating the instability and oscillating tendency of a triode. Though the 6AK5 has very little gain, it transfers the favorable signal-to-noise ratio of the first section to the grounded-grid second stage. The combination has the high stability of a grounded-grid triode and the favorable noise figure of a grounded-cathode triode. The over-all noise figure is equivalent to that of the
input tube alone, and the over-all gain is as good as or better than that of a pentode.

Interstage coupling

Several methods of coupling between the two stages are possible. The sim-plest-and in many ways the most ef-fective-is the direct coupling made possible by putting the second section in series with the first one. The interstage impedance to ground is very high and the number of tuned circuits is reduced to a minimum. This is the method used in this booster. The schematic is given in Fig. 2.
There are two variable tuned circuits, one at the antenna input and the other in the output of the second stage. These tuned circuits are the antenna (L1)

Two-tube Inputuirers are easy to convert. See circuit changes in Fig. 5.
and amplifier-plate (L4) coils of the original tuner, and need little or no modification. Before going into that, however, it might be well to explain the function of the two unfamiliar coils L2 and L3 which appear in the circuit diagram.

The purpose of L2 is to neutralize the grid-plate capacitance of the 6 AK 5 . This is normally only about 2 or $3 \mu \mu$, but this is increased by the Miller effect and by circuit capacitance. This capacitance offers very little impedance to the high TV-signal frequencies, and has two bad effects. On one hand, part of the input signal bypasses the grid of the first section completely, going through the interelectrode capacitance directly to the second section; on the other hand, part of the output signal at the plate of the first section feeds back through this capacitance to the input grid. Since the first section in a cascode circuit has little if any voltage gain, the feedback effect does not cause oscillation-at least not when the input is loaded with an antenna. But it does result in some loss of signal. On the other hand, the feed-through around the first section reduces the noise figure of the amplifier because the low input impedance of the grounded-grid second section loads the antenna input more heavily than the grounded-cathode first section. In any event, we get slightly more gain and a noticeably better noise figure-especially on the high-band channels-by preventing this feedback and feed-through in the first section of the amplifier.

We achieve both of these aims by adding an inductance (L2) to form a parallel-resonant circuit with the plategrid and circuit capacitance at the signal frequency. As we know, such a parallel circuit forms a rejection trap, preventing signals from going through it in either direction. We also have to add a blocking capacitor (C1) to prevent grounding the plate voltage. Although at first glance the result looks like a series resonant circuit, it is actually the parallel-tuned circuit shown in Fig. 3-a. (The reactance of the $250-\mu \mu \mathrm{f}$ blocking capacitor at TV-channel frequencies is so small that L2 is effectively connected directly to the 6AK5 plate.) The inductance of L2 is not critical. Where there is room, it can be 5 to 10 turns of No. 22 Formvar wire, wound on a $1 / 4$-inch slug-tuned form. Where space is at a premium (as in the Standard Coil tuner) it can be a self-supporting coil of 15 to 20 turns of the same wire, wound on a $1 / 8$-inch drill stem. It is best to resonate this on a high-band channel or the weakest station received.

Now let's look at L3. It neutralizes the plate-to-ground capacitance of the first tube. In a triode-connected 6AK5 this capacitance is around 2 or $3 \mu \mu \mathrm{f}$. The capacitance is increased if the tube is shielded, and no shield should be used on this section. It is also increased by wiring capacitance. With one thing and another, we end up with nearly $10 \mu \mu \mathrm{f}$ plate-to-ground capacitance. In the ordinary r.f. amplifier, where the load is a tuned circuit between plate and ground, this capacitance is put to work as part of the resonant circuit. But in the cascode circuit, the load is in series between the plate and the output of the next tube. So the plateground capacitance-instead of being part of the load-bypasses the signal before the load, and unless it is neutralized a good portion of the signal will be bypassed to ground instead of going into the load and being amplified in the process. Once again we neutralize by installing an inductance. L3 forms a
parallel-resonant circuit. See Fig. 3-b. Incidentally L3 and C2 also form a series-resonant circuit at a frequency much lower than the signal frequency. This can be tuned to form an interfer-ence-rejection trap by changing the value of C 2 . For instance, if the receiver has an i.f. in the $40-50$ me range, this coil can be made to do double duty by choosing a value of C 2 which forms a series-resonant circuit with L3 at 4050 mc .

Ordinarily we think of neutralization as an expedient to prevent oscillation. In the case of the cascode circuit, however, we use neutralization not for that purpose (for the circuit is extremely stable as is) but to keep the signal within the amplifying channel and prevent its loss through bypassing to ground. For this reason, L3 has a much greater effect on the gain than L2. Fortunately, L3 is not very critical and can be a duplicate of L2, adjusted for maximum gain on the high band or on the weakest station.

Otherwise, and in spite of these neutralizing coils, the cascode circuit is very simple. Putting in the wrong-size neutralizing coil will not ordinarily make the circuit inoperative; it simply will not give all the gain and the ideal noise-figure that can be obtained with the right values.

The two tubes are actually in series between the antenna input at the grid of the first tube and the booster output at the plate of the second section. About half the supply voltage appears at the plate of the 6AK5. The full supply voltage is applied to the plate of the $6 J 6$, but the effective plate-tocathode voltage is only half the supply voltage, because the grid is returned to the bottom of the cathode-bias resistor, as in ordinary circuits.

Circuit tuning

Now to get back to the tuned circuits. We need two of them, one at the antenna input and the other at the output of the second tube. All turers can supply these circuits with more or less

Fig. 2-Circuit of the cascode booster. L2 and L3 are neutralizing coils.
parallel-tuned circuit with the plateground capacitance at the signal frequency and therefore obstructs the passage of the signal to ground. Once again we must block this circuit to d.c. by putting a capacitor in series. We kill two birds with one stone by returning the ground end of L3 to the second grid. The $470-\mu \mu f$ capacitor thus serves two purposes. Although here, too, the circuit looks like a series-resonant circuit at first glance, it is also actually a
modification. The input circuit is usually no trouble at all, except in the case of some Du Mont tuners, whose case is considered separately later on. Most tuners provide a link-coupled input coil between the antenna terminals and the grid of the r.f. stage. If your tuner has one, leave it as is. If the tuner does not have link coupling, you will have to provide it. One way is to purchase a replacement input transformer for a Du Mont Inputuner and use it as indicated
in the section on Du Mont tuners. A simpler method is to use the capacitative transformation provided by the "R-9'er" input circuit. This is diagrammed in Fig. 4 and would replace the input circuit in Fig. 2.

The tuned output circuit is more of a problem. The simplest solution is to use the "R-9'er" capacitative transformer again, and this is the method diagrammed in Fig. 2. Tuners like the Standard Coil type which have transformer coupling between the r.f. stage and the converter, offer an alternative. In these, the oscillator winding on each channel can be either removed or opencircuited. The converter-grid winding can be reduced to 3 or 4 turns and used as an output link. This involves considerable work and offers only doubtful improvement in performance. So the capacitative output transformer is the most practical. It can be used with either 300 -ohm or 72 -ohm cable. The output impedance can be varied by increasing or decreasing the value of the $5-\mu \mu \mathrm{f}$ capacitor in Fig. 3. But the two fixed values given will work adequately as is.

There is only one really critical factor in converting a tuner into a booster. That is to keep the inductance of the leads to the tuned circuits unchanged. In tuners with a pentode r.f. stage, the antenna coil presents no problem at all. The r.f.-amplifier socket is already oriented for the best lead length from grid to coil or switch, and since this circuit is retained without change, the antenna tuned circuit is not disturbed at all. However, we must shift the output tank from the plate of the first tube to the plate of the second tube. To keep

Fig. 3-Equivalent parallel-resonant rejection traps formed by the neutralizing coils and associated circuit capacitances.

Fig. 4-Circuit of the "R-9'er" capacitive impedance-matching transformer.
this connection as short as it is now, it will probably be necessary to drill out the mounting rivets on the converter socket, and turn this socket so that the plate terminal is as close as possible to the coil terminal. If the resulting lead is a little longer than the original, make it of heavy wire or brass strap to reduce the inductance. In any case, dress this lead well away from the chassis-especially if it is a strap.

If the r.f. amplifier in the tuner was a pentode, usually the only changes needed in this circuit are to remove the tank circuit, tie the screen to the plate (removing the screen-bypass capacitor and voltage-supply lead), and connect the plate to the second-section cathode through the cathode resistor. In most tuners, however, the mixer circuit will have to be rewired completely, except for the heater circuit. Although certain values of bypass capacitance are suggested in Fig. 2, these are not critical. The best thing is to use the original capacitors in the tuner. The same is true of heater chokes, and that is why no values are given for them.
The converted circuit should not require much if any re-alignment. Any changes caused by rewiring can be compensated for with the trimmers already in the circuit. Since the individual coils in any tuner have already been adjusted for each channel at the factory, the alignment at one point-usually the weakest station-will suffice for all channels. The only other adjustment is peaking the neutralizing coils. This should also be done on the weakest channel, or on one of the high channels. If the coils are wound over iron cores, the slugs can be adjusted to peak them. If the coils are self-supporting, they can be adjusted by spreading or compressing the turns. The neutralization will be fully effective over only part of the range; but this is ordinarily enough to provide good gain on all channels.

Du Mont funers

Du Mont tuners can make the best boosters but offer some special conversion problems. Those with 3 -section spiral tuners have a pentode r.f. stage, but use an untuned antenna input, with two-section bandpass tuning between r.f. amplifier and converter. Others use a 6 J 6 ground-grid input stage. In any event the best way to convert them is to take them apart completely and rewire from beginning to end. Both sockets may require re-orientation to provide short leads to tuned circuits.

Fig. 5-Converting a Du Mont Inputuner to a highly effective cascode booster.
L101, L105, L104 are coil numbers used in Du Mont schematic for RA-103 Teleset.

The bandpass circuit is not used in the converted booster (Fig. 5). A more normal circuit with a tuned antenna stage is employed instead. The end inductances will be shifted around. The one wound with flat strap is used in the r.f. stage (L2); the one on the rear section (converter-oscillator), is moved to the front section. The untuned an-tenna-input transformer is retained and rewired as indicated in Fig. 5.

The middle section of the Inductuner is used as a continuously variable neutralizing coil (L7). (This accounts for the superior performance of boosters made from Du Mont tuners.) The end winding (L105) can be the one formerly used as the end inductance for the oscillator tank. Do all the wiring on the chassis with the Inductuner removed. Solder the end inductances in place on the chassis, so that only the connections to the Inductuner have to be made when this is fastened in place again. These can be soldered through the various openings in the chassis shield divisions. Now you can align the three tuned circuits on the highest channel by adjusting the brass slugs in the coils, and then on the weakest channel by adjusting the trimmers.

Standard Coil tuners

Standard Coil tuners are very well suited for conversion to boosters. The r.f. stage can remain almost intact. Merely remove the screen wiring and connect the screen to the plate. The r.f. plate tank must be moved to the plate of the second section. It should be possible to do this without changing the socket; but even re-orienting the socket poses no problem. The Standard tuner does not provide for continuous tuning of the neutralizing coil. At first thought the use of the oscillator winding suggests itself. However, it must be remembered that this coil is on the same form as the plate tank and coupled to it. The result would be an absorption trap, at least partly, rather than a rejection trap. The best thing to do is merely to open the leads to the unused oscillator coils at the strip terminals. The Standard tuner is neutralized at only one point-with coils which have to be added-but it should give excellent performance as a booster on all channels.

Conclusion

There are many obsolete tuners of various types now available at very low cost-some for free out of the junk-box-which can be converted into cascode boosters. If normal precautions are taken, the resulting boosters can equal or surpass in performance commercial versions of the same circuit selling for $\$ 25$ and up. Such boosters will bring higher gain without added snow to receivers already equipped with a cascode r.f. stage. In remote-fringe areas where one booster is not enough, the addition of a cascode booster may make all the difference between a snowy picture and one with local-station quality.

RADIO-ELECTRONICS

By ALAN G. SORENSEN

Part IV-Peaking-coil design

WINDING your own peaking coils introduces a number of problems. There are formulas for winding a coil to a given inductance, but there are so many variables that calculation is very complex. Cut-and-try is needed to get the desired results. An inductance bridge or Q-meter is the ideal tool for the peak-ing-coil constructor to use, but you can just check the high-frequency response curve and go by it.

It is easier to get accurate inductance values if you wind the coils on one of the small permeability-tuned forms such as the Millen 6900 series, the National XR-50 type, or Cambridge Thermionic type LS. These make high-Q, efficient coils, and the inductance can be adjusted easily by turning the slug in or out of the coil. When the slug is "all in" (near the center of the coil) the inductance is nearly double the value when the slug is all the way out. Thus a point can be found where the desired inductance is equal to the computed value.

In most cases a single-layer coil may be used (Fig. 1-a). However, when the desired inductance is over about 100 microhenries, it will be necessary to use a multilayer winding. A point of caution here. The distributed capacitance of a peaking coil must be kept at a minimum. It would be best to use a bank-type winding, as shown in Fig. 1-b. In this way adjacent turns represent parts of the coil that are close together while the ends of the winding are far apart physically, as well as electrically. The formulas below are used for calculating inductance:

$$
\begin{aligned}
& \mathrm{L}=\frac{(\mathrm{rN})^{3}}{9 \mathrm{r}+10 l} \\
& \mathrm{~N}=\frac{\sqrt{\mathrm{L}(9 \mathrm{r}+10 l)}}{\mathrm{r}} \\
& \mathrm{~L}=\frac{0.8(\mathrm{rN})^{2}}{6 \mathrm{r}+9 l+10 \mathrm{~d}}
\end{aligned}
$$

where $\mathrm{L}=$ inductance in microhenries; $\mathrm{N}=$ number of turns; $\mathrm{r}=$ radius in inches; $l=$ length of coil in inches; and $\mathrm{d}=$ depth of coil in inches.

The first two equations may be used for small single-layer air-core coils, and

Fig. 1-Cross-section views of singlelayer (a) and bank-wound (b) coils, with dimensions used in computations

Fig. 2-Shunt capacitances associated with a typical volume-control potentiometer at an intermediate setting. The upper capacitance increases as the arm approaches the high end and bypasses more h.f. energy around the resistance.

Fig. 3-Two-step attenuator used in many oscilloscope input circuits. The trimmer is adjusted to equalize the capacitance and resistance voltage-division ratios.
will be accurate to about 1%, if the coil is not too short. The length l must be greater than $0.8 \mathbf{r}$. The third equation is for multilayer coils. With an iron core in close proximity to the coil, as it is in this case, the minimum inductance will be somewhat greater than this computed value. All dimensions are in inches, and N is the number of turns. The answer is in microhenries.

About the easiest way to wind one of these coils is to first set the slug to its mid-point. Next, wind on several more turns of wire than will probably be needed. Connect the unit to an inductance bridge and remove turns until the inductance is close to the required value. Final adjustments are made by wiring the coil into the circuit and observing the frequency response of the amplifier. Most any size or type of wire may be used, so long as it will handle the plate current of the tube without overheating. These coils should be impregnated
with a good coil dope to keep out any moisture. (Adjustable peaking coils are available from several manufacturers. Almost any value required can be obtained.-Editor)

Gain control

Controlling the gain of a video amplifier presents a serious problem. Ordinary grid-circuit potentiometers cannot be used for two reasons:

1. The ring-shaped construction of a typical potentiometer brings the opposite ends of the resistance element close together. This proximity, plus the usual terminal arrangement, metal dust cover, and grounded shaft, creates a relatively high total shunt capacitance across the input side of the control. The capacitance has negligible effect at low frequencies, but above a few kilocycles it bypasses most of the signal.
2. The capacitance between the slider and the ends of the resistance element shunts the output circuit. This capacitance varies, of course, with the position of the slider, and actually reduces the high-frequency response more at highgain settings than at lower values.

Refer to Fig. 2 and assume a 1 -megohm control set at two-thirds of its resistance. At low frequencies the output will be two-thirds the input, but as the frequency is increased, the voltage at the center arm will drop off.

A typical compensated attenuator circuit is shown in Fig. 3. Using the values shown, the attenuation factor will be 100 . However, the equations may be used to find values for other ratios.

$$
\mathrm{C} 1=\frac{\mathrm{R} 2 \times \mathrm{C} 2}{\mathrm{R} 1}
$$

The reduction ratio is equal to R2

$$
\mathrm{R} 1+\mathrm{R} 2
$$

These circuits compensate for the input capacitance of the wiring and of the tube, which are included in C2.

Oscilloscopes use these attenuator circuits in their probes to reduce circuit loading to a minimum. The trimmer capacitor C 1 will be mounted in the probe; so will resistors R1 and R2. C2 will consist of the capacitance of the cable and the input circuit of the scope in parallel with the additional capacitance required to maintain the proper C1:C2 ratio. Most good oscilloscopes then have a switch attenuator with ratios of $1: 1,10: 1$ and 100:1. END

One-tube continuous-tuning

converter has 41-mc output.

Photo A-The model 60 u.h.f tuner.

THE u.h.f. television band (470890 mc), is considered an awkward band of frequencies. It is too low for microwave and radar techniques and circuitry to be fully applicable, and it is too high for convenient use of lumped-constant circuitry. Therefore it has been advantageous to combine both techniques in the General Instrument Corporation model 60 u.h.f.TV tuner. The resulting tuning element is an end-tuned quarter-wave coaxial line.

This quarter-wave coaxial line is capacitance-tuned at its open-circuit end, as shown in Fig. 1. This arrangement yields a tuning range of 2 to 1 or greater, providing continuous coverage of the entire u.h.f.-TV band. Inherently, the unloaded Q to loaded Q ratio of the tuning element is very high, leading automatically to a low dissipation circuit. Since the Q of end-tuned quarter-wave elements increases with increasing frequency, as opposed to the Q of lumped-element circuits where it normally decreases with increasing frequency, their use has permitted the design of a tuner with constant bandwidth and insertion loss over the entire band. A further advantage of endtuned quarter-wave lines is the mechanical construction of a ganged-rotor tuning device, whose construction is similar to that of a variable capacitor. In addition, this device permits shaping the rotor plates to give a straight-line frequency characteristic with the u.h.f. channels spaced equally over the dial.

The model 60 tuner consists of two tuned r.f. circuits, a half-frequency oscillator, an oscillator-doubler circuit, and a crystal mixer. The output of the tuner is a $41-\mathrm{mc}$ i.f. signal which may be fed through a low-noise i.f. preamplifier into the i.f. system of the *General Instrument Corp.

TV receiver. A complete schematic of the model 60 is shown in Fig. 2.

The two r.f. sections and the oscillator doubler employ the end-tuned quarter-wave lines. The rotor for each of these sections contains four plates. These are adjusted during alignment for continuous tracking over the band. The r.f. and oscillator-doubler rotors are on the same shaft as the oscillator rotor. The capacitance of the lines at the high-frequency end of the band is adjusted by a small trimmer strap at the open end of each line.

The antenna input is a balanced 300 ohm circuit which is reasonably well matched over the entire band. The first r.f. section is coupled to the second through a window in the shield between the two lines. This coupling provides an overcoupled r.f. characteristic over the entire band. (An earlier version of the model 60, see Photo C , uses closed loops instead of a window for coupling between the first and second r.f. lines. The larger loop provides coupling at the low-frequency end of the band and

Fig. 1-End-tuned quarter-wave line. Capacitor slug controls the tuning.
the small loop works at the high end.) The 1 N 82 mixer crystal is connected to the 2nd r.f. and oscillator-doubler lines through r.f. chokes whose self-resonant frequency is below the low end of the u.h.f. band. The antenna, r.f., and crystal coupling are adjusted to give uniform loading through the tuning range, yielding a bandwidth of about 10 to 18 mc over the band.

The oscillator circuit

The oscillator employs a 6J6, operat-
ing in a push-pull circuit at half the frequency required to give a $41-\mathrm{mc}$ i.f. output. Its circuit is shown in the righthand side of Fig. 2. The plate inductor of the oscillator is a horseshoe-shaved stamping rigidly mounted to the tuning capacitor support by eyelets and attached to the tube socket by lugs which are a part of the stamping. The centertapped grid-to-grid inductor is adjusted to resonate at the low end of the band and maintains relatively uniform oscillator drive over the tuning range. The characteristics of this circuit are such that replacing the 6J6 tube normally requires only slight adjustment of the oscillator trimmer to compensate for small capacitance differences.

The use of a half-frequency oscillator makes it necessary to use a frequencydoubling device. An end-tuned quarterwave line is tuned to twice the oscillator frequency, and excited by a loop which is proximity-coupled to the oscillator plate loop. The efficiency of this doubling action has been increased by including a G7 harmonic-multiplier crystal diode and a biasing circuit. This biasing circuit, consisting of a parallel resistor-capacitor combination in series with the coupling loop and crystal, increases the second-harmonic content of the coupling loop current.

Tuner output circuits

The u.h.f. tuner may be provided with either a link-coupled or a low-side capacitance-coupled i.f. output circuit as shown in Fig. 3. In each of these, the mixer crystal is bypassed directly at its i.f. end with a $33-\mu \mu \mathrm{f}$ capacitor. A test or "looker" point is also provided at the i.f. end of the crystal to permit checking the r.f. pass-band with an oscilloscope during production alignment.

In production, a milliammeter is con-

Photo C-An experimental form of the model-60 u.h.f. tuner with the side cover removed. Windows now replace the coupling loops.

Photo D-Under the model-60 tuner. Ends of quarter-wave lines form capacitor stators.
nected from the test point to the chassis ground to measure the crystal injection current while the oscillator and doubler sections are tuned and calibrated. The oscillator-doubler coupling loop and the doubler and mixer coupling coils have been optimized to give a mixer crystal current consistent with low noise figure and low conversion loss. In servicing, the crystal current may be used to check the operation of the oscillator, doubler crystal, and mixer crystal. The i.f. circuits and mixer crystal are mounted on the tuner top plate, and are enclosed by a small shield which is easily removed.

The $41-\mathrm{mc}$ i.f. signal is coupled from the i.f. coil through a short length of 75 -ohm cable to an i.f. preamplifier. The use of the link-coupled or low-side capacitance-coupled i.f. circuit depends on the type of circuit the tuner feeds. The link-coupled circuit is used with the General Instrument Corporation model 48 13-position v.h.f. turret tuner.

In the 13 th position, the v.h.f. tuner is converted into a low-noise $41-\mathrm{mc}$ preamplifier which uses the cascode amplifier as the first stage, and the mixer as the second amplifier stage with the B plus removed from the v.h.f. oscillator.
Setting the v.h.f. tuner in the 13th position operates a slide switch which performs the necessary operations to convert from v.h.f. to u.h.f. operation. This switch is mounted on the v.h.f. tuner and is operated by a cam connected to the rear of the turret shaft. In the u.h.f. position, the switch connects B plus to the u.h.f. tuner, connects the i.f. output to the v.h.f. tuner antenna terminals, and disconnects the v.h.f. antenna from the system. If a common v.h.f.-u.h.f. antenna is used, the switch transfers the antenna lead to the u.h.f. tuner.

Model 60 installation

Several radio manufacturers are using the model 60 u.h.f. tuner in their

Fig. 2-Schematic of the model 60. See Fig. 3 for alternative output circuits.

TV receivers. The tuner may be purchased with the control shaft extending from the front as in Photo A or from the rear as in Photo B to provide more flexibility in the design of the TV receiver. The Du Mont application of the model 60 u.h.f. tuner was discussed in "Circuit Shorts" in the May, 1953, issue.

When installed in the television receiver, the u.h.f. tuner shaft is usually connected to the fine-tuning control of the v.h.f. tuner by a string drive. This provides one-knob tuning for v.h.f. and u.h.f. channels. The fine-tuning control must be a 360 -degree type, without stops, when used for this purpose. The u.h.f. channel-selector dial is fastened

Fig. 3-Either link coupling or low-side capacitive coupling can be used to match the v.h.f.-amplifier input requirements.
to an additional sleeve and pulley on the v.h.f. tuner shaft. The dial cord drives this sleeve. The drive connections are shown in Photo B.
The model 60 u.h.f. tuner is mechanically rugged and stable, so its electrical performance is unaffected by forces which would tend to distort the unit. In addition, there are no moving contacts in high-current tuning circuits which can wear or collect dirt, thereby reducing the possibility of intermittent or noisy contacts.

End

SIGNAL TRACING in TV

By Engineering Staff, Scala Radio Co.

PART III A real time saver

-the 100:1 high-voltage capacitance-divider probe

WHEN alternate light- and dark-gray vertical bars appear at the left side of the raster it may be difficult to tell at a glance whether the difficulty is due to ripple in the high-voltage supply, or to some other cause. But with a high-voltage capacitance-divider probe the technician can see the high-voltage ripple on his scope screen, and measure its peak-to-peak voltage. He is then in a position to discuss matters in practical terms. A commercial high-voltage capacitance-divider probe is shown in Fig. 1:

Similarly, when there are slight rapid fluctuations in picture brightness, you may suspect intermittent leakage in a high-voltage filter capacitor. Of course, a substitution test will answer the question, but you can save time and difficulty with a capacitancedivider probe and scope. In the case of an intermittent leak in a high-voltage filter capacitor, the a.c. ripple across the capacitor will jump substantially during the brightness fluctuations. This test is more accurate than using a v.t.v.m. and high-voltage d.c. probe, because the pointer response of a v.t.v.m. is very sluggish compared with the inertialess response of the electron beam in the cathode-ray tube. These rapid voltage variations are almost completely smoothed out by the mechanical inertia of the meter movement in the v.t.v.m., but they ars reproduced faithfully on the scope screen when you use a capacitance-divider probe.
A high-voltage capacitance-divider probe is almost an absolute necessity for checking the shape and peak-topeak value of the voltage waveform at the plate of the horizontal output tube. This is a key test point in cases of sweep-circuit trouble, and the alert technician usually starts his troubleshooting here. We cannot hook the scope directly to the plate of the horizontal output tube. The high a.c. voltage at this point would promptly burn out the scope input circuit, as the blocking capacitor in the average scope is rated at only 600 volts.
We cannot use a low-capacitance 10 -to-1 probe (Fig. 2) at the plate of the horizontal output tube because the 6,000 to 7,500 volts peak-to-peak at this point invariably flash across the probe network, which is not rated for this type of testing. Some technicians

Two sets of matched signal-tracing probes. Three at left are Precision Apparatus Company's kit of 10:1 capacitance divider, crystal demodulator, and direct probe, with universal cable. RCA set at right includes direct probe (on cable), with plug-in crystal-demodulator and low-capacitance heads. Precision probes have color-coded heads and a shielded plug-in connector for the scope termination.
make a practice of using a gimmick for this purpose, or merely hold the tip of a 10-to-1 low-capacitance probe near the insulated lead to the plate of the horizontal output tube. Although these expedients will show the a.c.-voltage waveform on the scope screen, they are worthless for checking peak-to-peak voltage, and in most cases we must know the exact value of this voltage to get a true picture of conditions in the circuit.

Another highly questionable expedient in making these tests is to use a high-voltage d.c. probe (actually intended for use with a v.t.v.m.) with the scope. This is even less satisfactory than a 10 -to- 1 low-capacitance probe, because the unshielded multiplier resistor in the high-voltage d.c. probe is highly susceptible to hand-capacitance effects and 60 -cycle stray fields. Besides, the scope pattern changes with the slightest movement of the probe.

Spotting flyback defects

A typical normal waveform at the plate of the horizontal output tube is shown in Fig. 3. The shape of the wave helps the technician identify certain defects in the flyback transformer, and the peak-to-peak voltage shows the condition of the drive circuit.
For example, a large negative undershoot in the waveform (Fig. 4) indicates excessive leakage reactance between the primary and secondary windings of the transformer. This
undershoot may cause Barkhausen oscillations, which show up as one or two vertical black lines at the left side of the picture.
If the transformer has other defects, the undershoot may be followed by a large voltage ripple. This will modulate the intensity of the beam in the picture tube, especially if the receiver has no high-voltage filter network. This form of intensity modulation appears as a series of light- and dark-gray vertical bars starting at the left side of the raster and becoming weaker toward the center. The same screen symptoms can arise also from several other causes, so the scope check of the horizontal output waveform saves valuable time by eliminating certain sources of trouble.

High-voltage buzz

Experienced technicians have found many other uses for the high-voltage capacitance-divider probe. One of these uses is checking the output of the highvoltage filter system for regulation buzz. This should not be confused with syne buzz. Regulation buzz is caused by the limited current-output capability of most flyback and pulse-operated highvoltage systems-especially those that have voltage-doubler circuits. Since the picture-tube beam current is cut ofi for approximately $1,100 \mu \mathrm{sec} 60$ times a second by the vertical blanking pulse, it follows that the output voltage from the unloaded high-voltage supply will rise several hundred volts for the dura-
tion of the blanking pulse, and will then drop several hundred volts when the pulse ends and unblanks the screen. If the audio circuits and picture tube are adequately shielded, and if there are no serious faults in the audio system or FM-sound detector, this regulation buzz is ordinarily below the threshold of audibility. But TV receivers often develop buzz in service, and the test described must then be made.

Probe design

The essential elements of a highvoltage capacitance-divider probe are shown in Fig. 5. This type of probe is not frequency-compensated like conventional low-capacitance probes (Fig. 6). The chief reason for this omission is that high-voltage tests are made in horizontal sweep circuits where the highest frequency involved is only about the 10 th harmonic of 15,750 cycles.

The input impedance of a highvoltage capacitance-divider probe is made as high as possible, and depends, of course, on the frequency. In order to withstand the high voltages encountered in TV test work, the first capacitor in the probe network (C 1) is usually a high-voltage rectifier tube, such as a $1 \mathrm{X} 2-\mathrm{A}$. The plate-to-filament capacitance of these tubes ranges between 0.85 to $1.5 \mu \mu \mathrm{f}$. Thus, the input impedance of the probe at the fundamental frequency of the flyback pulse (15,750 cycles) is approximately 6 megohms, and approximately 0.6 megohm at the 10th harmonic. Since the probe impedance even at the 10th harmonic is still much higher than the internal impedance of the circuit under test, the flyback pulse is reproduced essentially without distortion.

Fig. 3-Normal sweep waveform at plate of horizontal-output tube, seen with the aid of a 100-to-1 capacitancedivider probe. Diagonal line is scope retrace. I'eaks are about $\mathbf{6 , 0 0 0}$ volts high.

Fig. 4-Negative pulse in sweep-output waveform indicates excessive leakage reactance in flyback transformer, may also generate Barkhausen oscillations.

Fig. 1-A commercial 100-to-1 highvoltage capaci-tance-divider probe. The head is made of special insulating material to withstand severe stress potentials in TV high-voltage supply networks.

Fig. 2-A 10-to-1 low-capacitance signal-tracing probe. Two screw adjustments are provided to compensate for cable capacitance and scope terminal imped ance.

In addition to being able to withstand applied voltages up to 12 or 15 kv , this capacitor must have a physical shape that will not encourage corona discharge in the probe head.

A trimmer capacitor is provided so that the capacitance ratio $\mathrm{C} 2 / \mathrm{C} 1$ can be adjusted to exactly 100 -to- 1 . This attenuation factor makes it easy to measure peak-to-peak voltages. Once the scope has been calibrated for a given peak-to-peak deflection sensitivity, it is necessary only to multiply the scope reading by 100 .

The calibrating trimmer capacitor is mounted in the probe head and does not have to be a high-voltage type. With a 100 -to- 1 ratio the calibrating capacitor need withstand only 1% of the signal voltage applied to the probe tip. The highest a.c. voltage likely to be encountered in TV work is about 15,000 volts, so that the trimmer capacitor need withstand only 150 volts.

Fig. J-Circuit of a high-voltage capa-citance-divider probe. C1 may be the plate-filament capacitance of a 1X2-A high-voltage rectifier. Trimmer capacitor C2 is adjusted for a 100 -to- 1 voltage ratio with a given cable and scope.

Fig. 6-Capacitance-divider probe circuit for signal tracing in low-level circuits. The scope-input impedance Z limits the high-frequency response unless compensating components and adjustments are provided in the circuit.

Commercial probes are shielded to avoid hand-capacitance effects and stray-field pickup that may confuse the scope trace. Since the probe is calibrated for a given shielded-cable capacitance the calibrating capacitor C2 must be readjusted if the probe is used with different cables and scopes.

Other probe uses

A high-voltage capacitance-divider can give more accurate results than a 10-to-1 capacitance-divider probe in many circuits where the technician ordinarily uses a 10-to-1 type. It is much better, for example, for checking the waveform and peak-to-peak voltage at the plate of the damper tube or at the plate of the horizontal oscillator: The input impedance of the 100 -to- 1 probe is higher than the input impedance of the 10 -to- 1 probe, hence, imposes less loading on the circuit. On the other hand, it may be impossible to get usable vertical deflection in low-level circuits with the 100-to-1 probe.

Most typical service scopes have vertical-deflection sensitivity of approximately 0.02 volt r.m.s. per inch at full gain, corresponding to a sensitivity of 0.057 volt peak-to-peak per inch. Under these conditions the $100-$ to- 1 probe will provide 1 inch of deflection with an input signal of 5.7 volts peak-to-peak. If the signal voltage is less than this, the 10 -to- 1 probe will probably have to be used.

Although it would be possible to provide an individual shielded output cable for each probe, the present trend is to provide a single universal shielded input cable which may be used with any one of an entire kit of probes. END

TELEVISION ...its a cinct!

By E. AISBERG

Abstract

Fourth conversation: Electrostatic and electromagnetic fields; how the beam is deflected and focused magnetically

WILL-This damned television is keeping me a wake nights! There are about a hundred questions going round in my head: Just what kind of waves do you put on the horizontal and vertical electrodes of your cathode-ray tube? How do you generate them? How big do they have to be? Why . . . ?
Ken-Hold it! Let's have your questions one at a time. Last time we talked about cathode-ray tubes that focused and deflected the beam with electrostatic fields. Those tubes are used only in oscilloscopes, or in the old 7 -inch sets. Practically all sets bigger than that use magnetic deflection.
WiLl-I can't see how. An electron has a negative charge, so a positively charged plate attracts it, and a negative charge repels it. But a magnetic field has no effect on an electrostatic charge.

From one field to another

Ken-If your electron was standing still, you'd be right; it would be just a negative charge and nothing else. But when it starts moving, it sets up its own magnetic field.

Will-This isn't what you used to tell me. In other days, when I was learning about radio, you explained that an electric current creates a magnetic field around its conductor, and the field could be thought of as concentric lines of force with the conductor as a center.
KEN-I don't think you ever lost much sleep figuring out the explanation. Otherwise, mightn't it have occurred to you that an electric current is nothing but a lot of electrons going in the same direction?
Will-I never thought of that! Of course, it's not the conductor, but the moving electron, that has the field around it! If we have electrons in movement we must have magnetism.

Ken-Good! But sometimes we get so wrapped up in this electromagnetic field that accompanies the moving electron that we completely forget it has an electrostatic field, too. Now, what about that?

Will_-That's easy enough. We know the electron is a charged particle. This charge we talk about is an electrostatic charge. And when the electron starts moving, we have an electrostatic charge and an electromagnetic field.

Ken-You've got it! Now, have you noticed that the assumed lines of the electric field radiate in a certain way from the electron, so they are always at right angles to the "lines of force" of the magnetic field? That is something worth remembering: Lines of electric and magnetic fields produced by the same cause are always at right angles.

Inside the magnetic field

Will-Then what happens when you have two magnetic fields produced by two different causes?

Ken-Haven't you seen it happen? When you bring two magnets toward each other .

Will-They attract each other-that is, if you have two north poles against two south poles. If two poles of the same kind are brought close together, they repel each other, the same as two electric fields of the same sign.

KrN-Then we can say that parallel magnetic lines going in the same direction repel each other, but when they go in

opposite directions, they attract.
Will_These magnetic lines of force are like a lot of people-the less you see of them the better. If you try to travel the same road with them, you just can't get along!

The magnetic theater

KEN-Now you've got that straight, you won't have any trouble figuring out how magnetic deflection works.

Will-Let me think. It would work all right to put a horseshoe magnet over the neck of the tube so the electrons would pass through its magnetic field.

Ken-And which way would the electrons be deflected?

Will-Why, they'd be attracted by one pole and repelled by the other, of course.

Ken--Oh, well, I suppose this is what you get for trying to use analogies on people without brains! But, Will, even you should know better than that. Have you been wandering off on a tangent ever since I pointed out that the electric and magnetic fields around an electron are perpendicular to each other at all points?

Will-Are you trying to insinuate that the electrons are deviated at a right angle to the magnetic lines?
Ken-I'm not insinuating anything. I'm just trying to get you to think a little. Now, just to give us a better look at things, I'll draw a cathode-ray tube in a rather uncommon way. We'll cut the neck off just ahead of the magnet and show a cross-section. We won't bother drawing any electrodes, either. Now, imagine your eye in place of the fluorescent screen. The black dot at the center is an electron coming directly at you.

Will-Quite a setup! Now that we've got all the scenery set and the actors in place, when does the show start?
Ken-At once. We're going to stage a scene of conflict presented by two forces. One of them is the field of the magnet (the parallel lines) and the other is the magnetic field around the electron in motion. We'll represent that field by circles around the electron. Now, how will these two fields interact?
Will-At each side the circle cuts the straight lines more or less at a right angle. So there'll be no interaction. But at the top the lines are going in opposite directions, so they'll attract each other. And on the bottom they're going in the same direction, so they'll repel.
Ken-So how is our play going to end?
Will_The electron will have to go up. It's pulled from above and pushed from below.
Ken-Exactly. And if we reverse the magnet?
Will_-The electron will be deflected downward. But it bothers me a little to see a horizontal field deflecting the electron beam up and down.
Ken-It tangles up a lot of television students. But you shouldn't have any trouble if you keep in mind that an electron always moves at right angles to a magnetic field. And besides, remember the deflection plates on the electrostatic cathode-ray tube. Didn't the plates in the vertical plane produce the horizontal deflection, and the horizontal plates . . . ?
Will-I remember. The horizontally mounted plates deflected the beam vertically. I guess the trouble is that I've just got to stop and think about it.

Making magnetic fields

Ken-You'll have no trouble in seeing, Will, that if we want to keep our spot in continuous movement, we have to keep the value and the direction of the magnetic field changing continuously. And we can't do that by juggling with permanent magnets.

Will_I suppose you could use electromagnets-coils carrying currents of the right size and direction to make the magnetic fields you need.

KEn-That's the way it's done! And, since we used two pairs of plates for electrostatic deflection, if we want to get horizontal and vertical movement of the beam with magnetic fields, we need . . .

WILL--. . . two pairs of electromagnets; one pair mounted vertically to give the horizontal deflection and the other pair with a horizontal axis for the vertical deflection.

Ken-That's right, Will. The two coils are usually placed right where the neck of the tube joins the cone.

Will-Are they iron- or air-cored coils?
Ken-They can be air-cored, but in modern sets usually powdered-iron- or ferrite-cored. They are wound in rectangular form, then shaped to fit tight to the glass of the tube. In cases where iron-core coils are used, the pole pieces are usually shaped to keep them as close to the glass as possible.

Will_This may be dumb, but I've been wondering if the electrons couldn't be focused just as well by a magnetic

field as by what you call "an electronic lens"?
Ken-Nothing dumb about that! When we were talking about electrostatic focusing, I told you that most tubes use a different kind. Well, this is it! Just as magnetic deflection makes it possible to get rid of the two pairs of deflection plates and simplify the tube construction, so does magnetic focusing permit us to get rid of the focusing elentrodes. That makes life easier for the tube manufacturers.
Will-H'm-if we keep on throwing out surplus electrodes, pretty soon we won't even be able to call it a tube. But how do we make a "magnetic lens"?
KEN-What's needed is a field in which the magnetic
lines run along the tube in the same direction as the electrons. So all you have to do is put a simple coil around the neck of the tube.

Will-And I suppose you adjust the focus by varying the strength of the current through the coil?

Ken-Exactly! And, because this field has to be constant, the electromagnet can be replaced by a permanent magnet placed around the neck of the tube, or by much smaller ones, placed inside it.

Dance of the electrons

Will-I sort of understand how-if we have a uniform magnetic field along the axis of the tube-the electrons would be concentrated in a beam along the same axis. Each electron that left the center of the tube would-if I have the idea right-be sort of taken by the hand and led gently back to the electronic path of virtue.

Ken-Your instinct is O.K. But what really happens is a lot more complex. Suppose an electron in a uniform field starts to move downward. We'll cut out this circle of paper and let the center represent an electron, and the edge its magnetic field. Then if the electron moves downward as well as forward, our circle leans ahead. If this bothers you, remember the magnetic field must always be at right angles to the electron's motion. The upper and lower edges of our leaning field are still at right angles to the lines of force in the uniform field it's traveling in, but its sides are no longer at right angles to the lines in the uniform field. So, you have attraction on one side, repulsion on the other. Result...

Will-The electron is pushed sideways. Nothing ever happens the way you'd expect it in one of these magnetic fields! So, if our electron moves to the left...

KEN-The same reasoning shows it will be shoved upward.

Will-And then the field will push it to the right. And so on! Our electron is traveling in circles around the tube's axis. But how does all this end?

KEN-The circles just get smaller till the electron gets back to the axis and decides to follow it without making any more trouble. You can say the electron follows a spiral or even better, a corkscrew-path.

Will-This magnetic focusing makes me think of a scalp dance.

KEN-Now, where did you get that . . .?
$W_{\text {ILL-W }}$ Well, the Indians tied their prisoner to a stake, then danced around him in smaller and smaller circles, till...

Ken-. . . at the last moment, some providential intervention saved the brave hero's scalp! I was brought up on Mayne Reid and Fenimore Cooper, too!

Question of sensitivity

Will-Now just how does magnetic shape up against electrostatic focusing? Magnetic-focus tubes should be a lot easier to make. But it should be easier to deflect and focus electrostatic tubes, because all you have to do is apply simple voltages to set up your electric fields. With magnetic deflection and focusing, you have to pass currents through coils. That means some loss of energy, so you must need some power, at least.

Ken-At first glance, all you say is absolutely right. But in practice, it applies only to small tubes-7-inchers or thereabouts. You just didn't think of the sensitivity factor.

Will-What's a cathode-ray tube got to be sensitive about?

KEN-What I'm talking about is deflection sensitivity. It's a value you get-for any particular tube-by finding out how far the spot moves if you change the voltage on the deflection plates by 1 volt or change the strength of the magnetic field by 1 gauss.

Will-If the spot moves further across the screen for a given voltage or current change, I suppose the tube is more sensitive?

Ken-That's the way it goes. Or you can say that the more sensitive a tube is, the smaller the voltage (or magnetic field strength) it takes to move the spot a given amount-say an inch.

Will-And what does the sensitivity of an electrostatic tube depend on?

KEN-The longer the electrons are in the deflecting field, the greater is the deflection. So the longer the plates are, the greater is the sensitivity. At the same time the sensitivity increases as the plates are brought closer together, because that makes the field stronger.

WILL_So you can make very high-sensitivity tubes by making the deflection plates very long and cutting the distance between them down to a minimum?

Ken-You can't get very far along that path. With

A little phosphorus, arsenic, or antimony will produce excess electrons in germanium, and these can move about and make the material a conductor. But what happens when one adds instead a little boron, aluminum, gallium, or indium, which have one less outer electron per atom than germanium has? The cloud of electrons surrounding the nuclei now has fewer than the normal number of electrons; we say it has holes in it. The holes can move about freely, acting just as if they were positive charges! Don't let anyone tell you that this is easy to see. Authoritative books take long mathematical chapters to prove it. But at least we know it is so, because experiment bears out the theory.

Thus we can make one kind of germanium with excess electrons, which are negative charges free to move and carry current. This is called n-type germanium, because the current-carriers are negative. Or we can make another kind-a germanium with holes that act like positive charges. This is called p-type germanium because the carriers are, in effect, positive.

Now electrons and holes can get into

Fig. 2-A junction-transistor circuit. Some of the electrons driven from the n-type emitter by B1 are absorbed by positive holes in the p-type base layer, and cannot reach the collector. The input signal varies the number of electrons released by the emitter, modulating the collector current. The additional drop across B2 amplifies the signal.
germanium in more ways than by being built in. They can be injected into the germanium. Suppose a fine pointed wire touches a strip of n-type germanium. If the wire is made positive, holes will be injected. How do we know? By making the experiment shown in Fig. 1. Here we have a long strip of n-type germanium and a battery (B1) that makes the right end negative. This end will attract holes. (Of course, the polarity of the battery also makes a current of electrons flow through the strip from right to left.)

Near the left end, we feed a positive

Complete amplifiers, oscillators, and other transistor-operated circuit assemblies, hermetically sealed in clear plastic plug-in packets.

Assembling experimental transistors in a dust- and moisture-proof box.

pulse to a pointed wire touching the strip. This injects holes. Near the right end we have another wire touching the strip. B2 makes this point a little more negative than the extreme end of the strip. Thus electrons flowing from right to left detour around this point, but holes moving from left to right are attracted to it. We connect this point to an oscilloscope.

What do we see on the scope? A small replica of the positive input pulse just when the pulse is applied, caused by a movement of electrons away from the collector and toward the positive emitter. Then-a fraction of a millisecond later-we see a stronger, broader pulse. This second pulse is the arrival at the collector of the injected holes which have been drifting through the germanium. As they drifted they banged repeatedly against irregularities in the crystal, reaching the collector by various paths, some shorter, some longer. This caused the spreading of the pulse. Some of the injected holes were lost en route by combining with free electrons, but most of them managed to reach the collector, and we can see their effect.

Junction transistors

The type of transistor easiest to understand is the junction transistor, first described by Shockley and others in 1951. This type, shown in Fig. 2, is a single-crystal bar of n-type germanium, with a thin layer of p-type about 1 mil thick dividing it at the center. The left-hand end is called the emitter; in this circuit it is used as the input electrode. The center slab of p-type germanium is called the base (by analogy with earlier types of transistors). In this case the base is grounded. The right-hand end is called the collector;
in this instance it forms the output electrode of the circuit.

In Fig. 2 the collector is positive, so as to attract electrons. Why doesn't it draw a lot of current from the base? Because the p-type base is full of positive holes, which the positive collector repels; but it has no free electrons. Thus a negligible electron current flows from base to collector.
The emitter, however, has lots of free electrons, and because B2 holds it a little negative with respect to the base, electrons flow from the emitter into the base. There they are free to move through the thin p-layer and, attracted by the positive collector, they go to it and form the output current.
You will see that this n-p-n transistor works just like a grounded-grid triode. The emitter supplies electrons, just as does the cathode of the triode. The base acts just like a biased grid (positive

Fig. 3-Characteristics of a commercial junction transistor (Bell Laboratories type M-1752). See text for explanation.
in this case), which has complete control over the emitter current. The collector, of course, acts like the plate, and can attract only electrons which have passed through the base. We can make $p-n-p$ transistors-p-type at the ends and n-type in the middle-which operate with a negative collector and have an output current of holes, not of electrons!

There are differences of performance,

Fig. 4-One undesirable effect of the ultra-thin p-layer required for highfrequency junction transistors is equivalent to inserting a large resistor $\left(R_{b}\right)$ in the base-circuit return lead.
as well. Some of the electrons traveling through the center p-type layer combine with holes. Thus the collector current is less than the emitter current, and the difference flows in the base electrode and corresponds to grid current in a triode. The ratio of collector current to emitter current is called alpha and is designated by the Greek letter $\%$. If alpha were 1 , there would be no base current. Alpha usually ranges from 0.95 to 0.995 . When alpha is very high (approaching 1) the transistor can be used satisfactorily in a groundedemitter circuit, corresponding to the usual grounded-cathode vacuum-tube circuit. This is important because a grounded-grid circuit requires resonant circuits or transformers of some sort between stages to get voltage gain, but with grounded-emitter circuits one can get gain merely by coupling the collector (plate) to the next base (grid).

Power supply

The astounding thing about the lowfrequency characteristics of junction transistors is that their characteristics stay good down to very low operating voltages. Fig. 3 shows the characteristics of the Bell Laboratories M-1752 junction transistor. The collector voltage is plotted against emitter current for various values of collector current. We see that when the collector voltage is above 0.2 volt, the collector current is almost independent of collector voltage. This corresponds to a very high plate resistance.

Some dashed curves are drawn on Fig. 3 corresponding to power inputs (collector voltage times collector current) of 100,50 , and 10 microwatts. We see that with 10 microwatts power supplied, the characteristics are pretty good at a collector voltage of around 0.2 volt. This makes it possible to run junction-transistor oscillators from batteries made of a coin and a paper clip separated by saliva-moistened paper, or even from the output of the photocell of an exposure meter.

Transistors for high-power applications are not as good yet as for low
power, but powers of several watts have been attained with experimental models.

Transistor problems

What about noise in transistors? There is noise, of course. At audio frequencies, the noise is worse than in vacuum tubes, but transistor noise varies approximately inversely with frequency-that is, twice the frequency, half the noise-and in the megacycle range (if the particular transistor can get there) it is pretty good.

Transistors do have their troubles at high frequencies. The electrons drift through the p-layer of the n-p-n junction transistor of Fig. 2, colliding here and there with imperfections in the crystal. This stop-and-go, zig-zag motion prolongs the time it takes for an electron to reach the collector, and different electrons follow different paths and take different times. If the frequency of the input signal is high enough, the injected electrons may reach the collector spread all over the cycle, so that there is little effective a.c. output current. Because the ratio of

Fig. 5-Reducing the thickness of the germanium bar, and biasing the side of the p-layer opposite the base connection negative, forces electrons to pass through the layer in a narrow region close to the base lead. This reduces p-layer high-frequency losses by 90%.
the output (collector) current to emitter current is designated by alpha, this falling off in the ratio with increasing frequency is called alpha cutoff. The alpha cutoff may range from 1 or 2 mc to around 100 me . What controls it? The thickness of the layer of p-type germanium which forms the base electrode. To increase the alpha cutoff we make the layer very thin.

Not only is this hard to do, but it introduces another problem as well. The resistance of the thin p-layer becomes very high crosswise to the slab. The wire connected to one side of the p-layer no longer grounds the whole layer effectively. It is as if we had a resistance of perhaps 1,000 ohms in the base lead, and this of course introduces considerable degeneration. See Fig. 4.
R. L. Wallace of the Bell Laboratories figured out a way of overcoming this defect by making a tetrode transistor, as shown in Fig. 5. First, he made the cross-section of the germanium bar as small as he could-about $1 / 100$ of an inch square. Then he added a fourth lead, connected to the p-layer opposite the base lead. He biased this fourth lead negative with respect to the base lead, so as to repel electrons. As a result, the electrons from the emitter had to pass through the p-layer in the region
near the base lead, so there couldn't be much resistance between the point where they crossed and the base lead. In this way, Wallace reduced the base resistance from over 1,000 ohms to around 100 ohms. With these tetrode transistors we can make video amplifiers that are good up to 10 mc , and tuned amplifiers or oscillators that will work at frequencies up around 10 c me.

Contact transistors

Of course, not all transistors are of the junction type. The original pointcontact type is still more common. In this type (Fig. 6), a small piece of germanium, the base, is soldered to a metal electrode. The emitter and collector are two pointed wires, touching the germanium close to one another. The operation of the point-contact transistor is the same as that of the p-n-p junction transistor, for, by an electrical forming operation, small islands of p-type germanium are formed about the emitter and collector points, and these regions of p-type material act just like the emitter and collector of a junction transistor.

Point-contact transistors behave differently from junction transistors in one way. Because the area of the collector is very small, the charge of the electrons which form the collector current affects the electric potential in the germanium near the collector. Thus, when the collector current changes, the potential inside the germanium changes, and this tends to change the collector current more. In fact, when the emitter current is changed the collector current may change as greatly as 50 times as much, giving an alpha of 50 . Thus, unlike junction transistors, point-contact transistors can have current gain even in grounded-base circuits, but they will

Fig. 6-Circuit of a contact transistor. not operate at as low voltages as the junction type will.

Transistors come in many forms, and I have included pictures of several. Particularly interesting are tiny assemblies containing transistors, capacitors, resistors, and other circuit elements, all embedded in plastic. These are just the stuff for equipment which must be operated and serviced by people who can follow a manual but who don't know much about circuits.

What will newer, better, and cheaper transistors make possible? Radios no bigger than a match box or even a wrist watch seem feasible. But transistors mean a lot more than that. Because they are small and take little power, they will be used where vacuum tubes are impractical. Think of a "thinking machine" with all the vacuum tubes torn out and their spaces filled completely with transistors. Surely the machine would have a lot more brains!

A simple network

to help maintain

tonal balance at

low volume levels

a bridegot AUDIO CONTROL

By WM. AUSTIN

THE loudness control, which boosts the bass and treble frequencies as the volume is reduced, thus compensating for the loudness-frequency characteristics of the human ear, has become an important element of a large number of high-fidelity audio systems.

Most loudness controls operate by adding low-pass filter sections as volume is decreased. This calls for an expensive step-by-step control, or multiple taps on a potentiometer. Tap switches

Fig. 1-Basic bridged-I' filter circuit.

Fig. 2-Circuit of the bridged-T control.

Fig. 3-F'requency-response characteristics of the bridged-T control. A, B, and C show the response at three-quarters, one-half, and minimum-volume potentiometer settings respectively.
are cumbersome and costly, and potentiometers with the required number of taps are special jobs.

By using the bridged-T circuit-together with the regular bass and treble controls of the amplifier-an effect approaching that of a loudness control may be obtained with an ordinary potentiometer, three small capacitors, and three fixed resistors.

Fig. 1 shows the basic bridged-T circuit. It presents nearly infinite impedance at a frequency f (where $f=$ $1 / 2 \pi \mathrm{RC}$) with rising response above and below this frequency. All that is needed to use it to control loudness is to choose values giving maximum impedance at a frequency near the center of the audio range (1,000 to 3,000 cycles), and to provide a means of varying this impedance as volume is changed.

A practical hookup

Fig. 2 is the circuit. The component values give maximum attenuation at about 1,000 cycles. Fig. 3 shows the effect of the control on the frequency response at various volume levels. As volume is increased, the bridge is shunted gradually, until at full volume the response is flat except for a small amount of bass boost. This can be minimized by using a fairly low value of plate-load resistance in the stage preceding the loudness control. Since this
circuit provides considerably more treble boost than the Fletcher-Munson curve indicates is necessary at low volume levels, it is desirable to use a simple treble-cut tone control to reduce the high end.

Don't discard tone controls

This unit is not a substitute for individual bass and treble controls. Individual tastes and the characteristics of program sources vary and it is still desirable to have both ends under control. The Fletcher-Munson curves show that the ratio of bass to treble boost varies with loudness. An ideal arrangement is to retain the individual bass and treble controls and use the loudness control in tandem with the regular volume control. The $250,000-\mathrm{ohm}$ linear potentiometer can then be the rear section of a dual control and the front section can be a standard audio-taper volume control of whatever value is desired. An on-off switch also can be added if desired.
I use this setup in a Radio Craftsmen RC10 tuner with excellent results. This tuner has a bass-treble control circuit between the two audio stages. See Fig. 4. The bridged-T control is between the plate circuit of the first stage and the bass-treble control (point X in Fig. 4). The original volume control follows the plate circuit of the second stage.

END

Fig. 4-Applying the bridged-T control to a commercial audio amplifier (Radio Craftsmen RC10 AM-FM tuner). Control is inserted at point X in the diagram.

OCCASIONS frequently arise where the PA engineer has to feed two or more independent sound systems from the same program source. Electrical hookup between separate systems is of ten fraught with various difficulties, so the most common method is to run out a separate microphone for each system to be tied in, resulting in the veritable battery of microphones often seen when a celebrity speaks on an important occasion. This method has serious disadvantages, the greatest of which is the variation of level, whenever the speaker moves or turns his head, on some of the systems whose microphones are not so well placed as others.

Obviously the best approach to the problem would be to use only one highquality microphone (with an extra one as a stand-by), to supply all the different systems. This would simplify program pickup, as well as monitoring problems on each of the systems hooked together. There would still be problems, but they need not be insurmountable once they are understood.

The chief problems may be listed under four headings:

1. When two systems are coupled together, a severe line hum often develops in one or both systems, that
was not present in either before the connection was made.
2. It may be difficult to provide the right impedance match between the two systems without affecting the volume level in one or both.
3. Where several systems are fed from a common source there may be interaction between controls on the different systems. One operator altering his volume or tone-control settings may affect the volume and quality of the signals delivered to other parts of the hookup.
4. One or more systems in the hookup -recording units for example-may not require the entire program, and may adopt different methods of cutting in and out of the network. Precautions must be taken to see that any such circuit modifications in one part of the system do not interfere with the rest of the hookup.

500-ohm bus system

By far the most versatile method is to set up a 500 - or 600 -ohm balanced line that serves as a basic interconnecting bus. The best arrangement is to have a microphone amplifier that will deliver an output level of about 1 volt into a balanced $600-\mathrm{ohm}$ line (0 vu), but this is by no means essential; any
good amplifier with the necessary microphone-control facilities can generally be made to serve this purpose by padding the output to 500 ohms.

With this system not only can a program from a single source be fed into a number of systems, but also various program sources can be brought into the hookup by using separate local amplifiers to feed into the 500 -ohm bus at the desired points. Much of the hum trouble can be eliminated by careful attention to impedance and level matching. However, an important cause of hum that cannot be taken care of in this way is that due to differences in potential between the ground connections of the individual systems.

Ground potentials

In the interests of public safety, all power circuits are connected to ground somewhere, and a ground connection also is provided on some power-supply outlets as a safety precaution. The association between the ground connections of the various supply circuits in the building sets up small currents at the line frequency in the grounded framework. These currents in turn set up slight potential differences, usually only a small fraction of a volt, but even such a minute potential can create
a serious hum if it gets into any highgain amplifier. This often happens when two systems are coupled together, so the solution rests in careful selection of ground-connection points.

While on this subject, it is well to mention that a good-quality PA amplifier should operate well with or without a ground connection, and the effect of breaking or making this connection should be almost inaudible-even with the volume turned up to maximum and the ear close to the loudspeaker. If an amplifier does not satisfy these require-

Fig. 1-Method of connecting a bal-anced-input amplifier to a balanced $500-$ ohm line. Series resistors in padding net work reduce loading, and allow several amplifiers to be fed from one line.
ments, it is wiser to leave it out of any hookup system and look for a better one. If no better amplifier is available, then careful treatment may produce passable results, as explained later in this article.

Getting on the bus

Assume that we have a microphone amplifier delivering an output of 1 volt into a 500 -ohm balanced line, and we are going to feed a number of sound systems from this line. Most PA amplifiers are provided with separate microphone and phono inputs; the microphone input is generally the best one to match the 500 -ohm line to, because it will have adequate reserve of gain, whereas the phono input may not. Microphone inputs are usually low-impedance, between 10 and 50 ohms; some are balanced to ground; some may be floating; and some may have one side connected to chassis.

Fig. 1 shows the simplest method of connecting the line to a balanced microphone input. For a single-ended input it may be possible to unhook the ground connection inside the amplifier, but this may give rise to trouble because the ground connection is probably included to maintain stability in the amplifier. If this is removed, and the input circuit is grounded only at some remote point, hum trouble will probably appear.

Fig. 2 shows one method of connection where one side of the amplifier input is grounded. This may give trouble for two reasons: the unbalanced line is likely to pick up hum or cross-

Fig. 2-Feeding an unbalanced-input amplifier from a balanced line. Potential differences between the two grounds may introduce hum at power frequency.
talk from telephone lines or other speech circuits that may run near it; and the small potential difference between the two ground connections may inject a line-frequency hum.

Fig. 3 shows an alternative method of connection that avoids strapping the two ground connections together as in Fig. 2, and also provides a balanced connecting line. One of these two methods of connection should prove satisfactory. When going into low-level low-impedance inputs, the resistor values should be adjusted so the resistance from both lines to ground is equal at the distributing center. If this is checked by d.c.-resistance measurement, all amplifier inputs and outputs should be disconnected, or the winding resistance of their input and output transformers will invalidate the result.

Most high-impedance phono or crystal-microphone inputs are unbalanced. Fig. 4 shows the simpler method of connection here corresponding to Fig. 2 for low impedance, while Fig. 5 shows the method to adopt where a balanced line is necessary.

Line impedance

An important feature to realize about these circuits is that the impedance of

Fig. 3-One method of reducing line hum by the insertion of an isolating resistance between the two ground points
the connecting lines must be in the vicinity of 500 ohms. This is achieved in each of the circuits shown by inserting padding resistors at the receiving end of the line. Two factors feature in the reason for this precaution: (a) transmission losses; (b) pickup of hum or cross-talk.

Lines run at low impedance-that is, by putting the resistor networks at the output end of the line as in Figs. 1, 2, and 3 -introduce line loss due to the fact that the line-conductor resistance may be an appreciable fraction of the operating impedance. Such low-impedance circuits are also more susceptible to inductive pickup from magnetic hum fields through which the line may pass. The currents induced in the line will be of the same magnitude whether the line is 500 ohms or low impedance, but in the case of the 500 -ohm line they will be attenuated by the padding network at the receiving end.

Lines run at high impedance-that is, by placing the padding resistors of Figs. 4 and 5 at the opposite end of the line; cause excessive loss of high frequencies due to line capacitance. The line is also prone to pick up noise from electrostatic fields. Of the two extremes a low-impedance line is preferable because the inductive components it picks up predominate at very low audio frequencies, which may not get through the average PA amplifier-speaker com-

Fig. 4-A simple method of feeding an unbalanced high-impedance input from a low-impedance unbalanced audio line.

Fig. 5-Connecting a balanced low-impedance line to a high-impedance singleended amplifier input. If additional units are fed from the same line the value of the shunt resistors in the padding network should be increased.
bination; while the static pickup in a high-impedance line contains high-frequency components with a greater annoyance potential, and loss of high-frequency signal components in the highimpedance line interferes with program quality.

Physically a balanced 500 -ohm line is generally made up of a twisted pair run inside flexible shielding. Highimpedance lines are usually singleconductor shielded wire, coaxial line, or an unshielded twisted pair with one of the conductors grounded.

Besides providing good program quality with freedom from spurious pickup, the correct padding network, properly placed, will usually take care of problems 3 and 4 listed at the beginning. The values of the padding network should be chosen so that whatever happens at the outlet end will not materially affect signal voltages at the input end.

For example, phone plugs and jacks are sometimes used as input connections to an amplifier. When a plug of this type is inserted into its jack, the line connected to the plug is shorted momentarily. If the main 500 -ohm line is connected to the plug, then insertion or removal of the plug would momentarily short-circuit the whole program. Inserting a padding network between the line and the plug avoids this. In some tape recorders inserting the input plug disconnects the playback head, so that if an operator wishes to listen to a section of recording on his tape he has to remove the input plug. Unless the foregoing precaution is observed this operation could involve interference with the program.

Another wise precaution is to see that all padding resistors are soldered securely to the lines (once the values have been satisfactorily determined by experiment), and are suitably covered with insulating tape or otherwise protected against any possibility of accidental short-circuit or contact that might interfere with the program in any way.

Improvising outputs

The foregoing assumes that a suitable microphone amplifier with a balanced $500-\mathrm{ohm}$ output is the signal source for the entire network. If such an amplifier is not available, additional padding will be necessary to match the output of the microphone amplifier to the 500 -ohm bus. If the amplifier has the usual low-impedance voice-coil output, a dummy load equal to the proper voice-coil impedance should be connected across the output, after which resistors of 270 ohms should be connected in series with each side of the line as shown in Fig. 6.

Fig. 6-l'adding out a low-impedance output winding to feed a $500-0 h m$ line.
The voice-coil winding should not be comnected to ground on either side, or the line will not be balanced. If the amplifier requires a ground connection to the voice-coil winding for satisfactory operation, the dummy load resistor

Fig. 7-Changes required where one side of the voice-coil winding is grounded. should be center-tapped or made up of two equal resistors and the ground connection made to the center tap as in Fig. 7. If the secondary of the output transformer is used for feedback purposes, one side will be connected to the internal amplifier ground and the other side through a suitable resistor to the appropriate feedback point. In this case the modification of Fig. 7 would

Fig. 8-Circuit modifications where out-put-transformer secondary is part of feedback network. See details in text.
cut the feedback in half. To rectify this, the feedback resistor also should be halved. The simplest procedure in this case, involving minimum alteration to the amplifier (this is something that must always be borne in mind, because the amplifier must be put back to normal after the hookup), is to disconnect the ground connection from one side of the transformer secondary and connect it to the center-tap of the dummy-load resistor. Then shunt the feedback resistor with another resistor of the same value. These changes are shown in Fig. 8.

Most amplifiers can be treated in this way to supply the necessary 500 -ohm
output, but you may find one that has high-impedance output, above 500 ohms. I have frequently used an amplifier with 2,000 -ohm output (intended for constant-voltage-line work) for this purpose. The procedure is similar in this case, but the series resistors will have to be much higher than the line impedance. This type of network is shown in Fig. 9.

Multiple signal sources

Where programs are to be taken from more than one source in the system, it will be advantageous to feed the 500 -ohm bus from a local microphone amplifier at each point of origin. If

Fig. 9-Padding a network for matching a high-impedance output transformer to feed a balanced $\mathbf{5 0 0}$-ohm line.
the amplifier is one specially designed to feed a $500-\mathrm{ohm}$ balanced line, ad ditional precautions are necessary to see that its operation will not interfere with programs originating from other amplifiers. The plate resistance of the output stage is usually much lower than its load resistance, which means that, even though it is connected to a 500 ohm output circuit, when the amplifier is warmed up, a signal from a nother source will "see" this output circuit as 500 ohms shunted by the plate resistance, or much less than 500 ohms. Now suppose the amplifier is switched off: The shunting effect of the plate resistance disappears and the other amplifier will be feeding into a circuit that has now risen to its true 500 ohms. Thus, switching the first amplifier on and off, although it may not be carrying any program, will affect the output from a second amplifier, changing its volume level by from 10 to 20 db .
From this viewpoint, amplifiers with padding networks may be better than those specifically designed for 500 -ohm output. For the correctly designed amplifier the best plan is to insert a resistor of 150 ohms in series with each side of the line at the output, to limit the reduction in shunt impedance when the amplifier is on, as viewed from another amplifier feeding the 500 -ohm bus. This will take care of impedance matching, but may still leava a pos-

Fig. 10-An isolation transformer may be needed to reduce hum when feeding an a.c.-d.c. amplifier with a floating B minus return from an audio line.
sible change of level of about 6 db , should the amplifier be switched on and off while the program is coming from other source. A wise precaution is to establish a recognized rule, that

Fig. 11-Another method of connecting an a.c.-d.c. amplifier to a $500-\mathrm{ohm}$ line. The potentiometer across the input terminals is for balancing out line hum.
the amplifier must be kept running throughout the whole program, whenever any part of the system is being used. This rule may not be necessary with amplifiers padded out from lower or higher impedance to 500 ohms.

Isolating grounds

The padding arrangements shown in Figs. 1 through 5 usually prove perfectly adequate with good amplifiers. Sometimes, however, an amplifier must be pressed into service which does not meet the conditions specified earlier, of satisfactory operation with or without a ground connection. Many amplifiers designed for universal operation come in this category. Complete isolation must be provided between the system ground and the chassis (or ground bus) of this particular amplifier.

a

Fig. 12-Isolating the a.c.-d.c. amplifier from the power line. (a) A $1: 1$ power transformer for a.c. operation. (b) The same transformer connected as a dual choke for operation from d.c. power lines. See the text for further details.
Several methods of attack can be tried, and the choice will be controlled by the equipment available. If a shielded line-to-line transformer is available, the method shown in Fig. 10 should be satisfactory. If only a line-tospeaker matching transformer or some such component is available, the circuit of Fig. 11 can be used. The potentiometer may be almost any value, as long as it is higher than the other components in the circuit. It is used to balance out hum pickup.
An alternative approach is to use an isolating transformer between the pewer line and the amplifier in question. See Fig. 12-a. An isolating transformer also can be used as shown in Fig. 12-b when the supply is d.c. with the wrong side grounded.

END

TMANSGTUR MEDABAMMEEP by nathaniel rhita

This simple transistor amplifier has a current gain of approximately 10:1.

THE transistor is to current what a triode tube is to voltage. A transistor makes an excellent current amplifier. We have constructed a circuit using Raytheon's type CK722 that gives a gain of 10 with about 100 microamperes input to the emitter. When the transistor feeds into a $0-1$ ma meter, we can actually measure $0-100$ microamperes full scale. The advantage of this circuit is that we can measure weak currents with an inexpensive, rugged instrument.

The photos and schematic show a 2 range micrometer using a 1 -ma movement. When the switch is thrown to MILLI the range is $0-1$ ma since the meter itself is across the input. With the switch in MICRO the 10 -to- 1 current anuplifier precedes the meter so the range is $0-100$ microamperes. To avoid unnecessary battery drain leave the range switch in the milli position wnen the meter is not in use.

Actually the transistor amplification is not constant all over the scale. It is slightly higher than 10 near full scale, and less than 10 near the bottom of the scale. To reduce error, a compensating circuit is included. Adjust the variable resistor for exact reading near 0.8 on the meter. Then accuracy will hold

Inside and outside views of the transistor microammeter. The two-way switch allows the meter to be used alone where $100-\mu \mathrm{amp}$ sensitivity is not required.
over most of the range. We find that the error is only 2% or 3% from .2 ma on the meter (20 microamperes input) right up to full scale. Readings near zero have greater error, but this is not serious.

As a microammeter, the positive in-
put terminal is A which ties to the emitter. As a milliammeter, the positive terminal is B. Note that in the MILli position, the $1.5-\mathrm{v}$ cell is disconnected but that the transistor input circuit is left across terminals A and B . This produces negligible error.

END

The Wench With the Wrench

 Pretty Celeste Mogab wasn't too sure at first about the right way to install a simple thing like a new PlatinumPlate u.h.f.-v.h.f.-AM-FM-TV tuner and needle-scratch filter with overdrive and deep-freeze attachments-but laytheon's new TV servicing television program showed her all she needed to know. This novel method of delivering the latest dope on u.h.f. techniques was devised by Raytheon as a means of reaching the maximum number of technicians in a given area with minimum inconvenience to busy shops' service activities. Another advantage is that it gives everyone a front-row view of what's going on. Technicians who tuned in the first broadcast over WFPG-TV, Atlantic City's new channel-46 station, agreed enthusiastically that Raytheon's new model has several interesting fea- tures.

TV CHASSIS SIMPLIFIED

MANUFACTURERS realize that TV receivers have to be serviced. At least two of the 1953 series reflect that realization in chassis design. The Stewart-Warner 9300 chassis pictured here is possibly the best example of the trend toward a "serviceable" TV chassis.
The 9300 under-chassis view, contrasted with that of an older receiver, shows what can be done when engineers want to simplify a TV set. The top views shows a "unitized" construction in which all parts are readily accessible, and no tubes are mounted under the kinescope (or under the chassis!). Power and high-voltage fuses are both mounted in top-chassis, easily accessible positions.

A bridge support at the rear of the chassis makes it possible to rest it on either side, or to turn it upside down on the bench, with complete safety. The flyback transformer--a high-mortalityrate component, and one which the service technician often wishes to checkis mounted with plug-in connectors instead of soldered leads. A transformer can be removed by unscrewing two sheet-metal screws and pulling out five connectors. A complete replacement takes less than five minutes, in the customer's home.
Another striking difference between old and new TV models is visible in the two Sonora chassis illustrated. They are the company's 1952 and 1953 21 -inch models. The same number of components are to be found in each set, but there is a striking difference in the way they are arranged in the 1953 model.
The distribution of parts abovechassis does not show quite the same advantages of convenience and accessibility as the below-chassis arrangement. A couple of the tubes are hard to see or to get at while the chassis is in the cabinet, and the rectifier tube on top of the transformer is not an aid to easy replacement of tubes on that side of the chassis. The setup is a decided improvement in heat dissipation, however. The power transformer has been removed to the top of the chassis, and the position of the rectifier tube is excellent from the radiation point of view. A number of the larger capacitors are mounted on a vertical subpanel in a cooler part of the chassis area.
Slight differences in chassis layout and component accessibility may well mean the difference between a simple repair job and a heart-breaker. Service technicians will watch with great interest for further indications of this trend toward simplification.

END

Underchassis view of S-W 9300 (above) compared to old standard chassis shows new inspection and servicing ease.

Top view of the 9300 . High-voltage can (top) is removed. Note support at rear.

The above-chassis views of two Sonoras show improvement in heat radiation. Capacitors are mounted in cool area.

A transformer with plug-in terminals.

Old (above) and new (below) 21 -inch Sonoras compared. Tuner and power transformer were put above chassis and parts layout much improved in the newer model.

WHERE interference enters a TV receiver through the antenna or transmission line, stubs provide a reliable and permanent solution. Several factors favor their use: They are easy to make and install, their cost is very low, and they can reject almost all types of outside interference except co-channel interference (two stations picked up on the same channel) and broad-band noise. Generally speaking, stubs have a limited bandpass characteristic, which especially favors their use for elimi-

* Editorial Dep't., John F. Rider Publisher.

Fig. 1-(a) Equipment setup for finding interference frequency. Generator output must be kept low to avoid overloading. (b) Typical scope trace. The interference frequency can be read directly from the marker dial when both pips coincide. See text for details.
nating FM-broadcast interference (88 to 108 mc). This characteristic, however, becomes a handicap when we want to eliminate adjacent-channel interference; but even this limitation can be overcome. Steps to alleviate this condition are given later.

Before we can make a stub, we must first know the interference frequency. One of the most accurate methods is to use a standard sweep-marker generator and oscilloscope, arranged as shown in Fig. 1-a. Disconnect the transmission line from the receiver, and couple it loosely to the output leads of the marker generator, as shown. Connect the marker generator to the antenna terminals of the receiver and hook the scope across the video-detector load resistor. The next step is to turn to the channel where the interference is most severe and adjust the fine-tuning control of the receiver for maximum interference. Cover this channel with about a 10 -mc sweep from the generator to obtain a response curve similar to Fig. 1-b. Three pips should appear on the curve: the video-carrier signal, the generator-marker signal, and the interference signal. Vary the markerfrequency control of the generator so that the marker pip lines up with the interference pip. At this point, the marker-frequency dial of the generator gives you the interference frequency.

When the frequencies of the marker and interference signals are not exactly equal, a sine wave appears on the base-line. This is the frequency difference between the two signals. The frequency of the beat decreases as the signals are brought closer together. The beat disappears completely when the two signals are equal.

Open and shorted stubs

The quarter-wave open and halfwave shorted stubs are the easiest to construct and install. Both types are equally effective for all practical purposes, and either may be used. They are constructed from the same material as the transmission line of the receiver. Four examples of stubs for both $300-\mathrm{ohm}$ ribbon lead and $75-\mathrm{ohm}$ coaxial lines are shown in Fig. 2. Their lengths, l, are computed from the formulas given in Table I. The length of the stub, l, is in inches and f is the interference frequency in megacycles. As an example, consider the case where we want to find the length of a shorted half-wave stub to eliminate $200-\mathrm{mc}$ interference from a receiver with $300-$ ohm input. The length of the stub is then determined from the formula given in the chart. That is,
$l=\frac{4,850}{\mathrm{f}}=\frac{4,850}{200}$ or 24.25 inches or a little over 2 feet.

Always cut a stub several inches longer than its calculated length to allow for final adjustments after the stub is installed. With quarter-wave open stubs, cut off $1 / 4$-inch sections from the open end until interference rejection is maximum. In the case of halfwave, shorted stubs, short out $1 / 4$-inch sections by cutting through the insulation and shorting the wires with a razor blade or fine knife. Twist and solder the wires at the point where the least amount of interference is observed. On coaxial lines, puncture the insulation with a needle or thumb-tack, thereby shorting the inner and outer conductors.

Stubs may be taped, tacked (use
fiber-head tacks), or stapled to wood receiver cabinets. (With ribbon line the staple must lie parallel to the stub wires-never across them.) If the cabinet is plastic or steel, fasten the stub firmly to some nearby wooden structure such as a table or chair. Never bend or twist stubs. Doing so may change their natural resonant frequencies.

An important point to remember is that the quarter-wave stub greatly attenuates second harmonics and the halfwave does the same to third harmonics. For example, if a quarter-wave stub is cut to eliminate $91-\mathrm{mc}$ interference from an FM station, then it will also eliminate 182 mc . This will attenuate the video signal on channel 8 (180-186 mc). A half-wave stub cut to 91 mc will attenuate 273 mc . This is well above the television spectrum.

Stub switching

After a stub has been installed and trimmed for maximum interference rejection, turn to all other channels to make sure it does not have any detrimental effects on them. If it does (which is most likely in fringe or weaksignal areas), then add a switching arrangement to take the stub out of the circuit except when it is needed. A d.p.s.t. switch, as shown in Fig. 3, may be used. A rotary switch is preferable since the capacitance between the contacts of most types is fairly low.

Reducing stub $\boldsymbol{\varphi}$

Stub switching may not be necessary if the interference is much weaker than the channel being viewed. A stub having a lower Q and, therefore, less interference rejection, may be used instead. To reduce Q, we add a series resistor to the quarter-wave open stub or a parallel resistor to the half-wave shorted stub. The connections for these resistors are shown in Fig. 4. Their ability to reject varies inversely with

Fig. 2-Four types of stubs. (a) $300-$ ohm, quarter-wave open stub. (b) 300 ohm half-wave shorted stub. (c) Coax-ial-line quarter-wave open stub. (d) Coaxial-line half-wave shorted stub.
their ohmic values. That is, the larger the ohmic value, the less the interference rejection; conversely, the smaller the ohmic value, the greater the interference rejection. The resistor for any particular installation is best determined by experiment. In an actual case a carbon resistor of about 25 ohms gave a 2 -to- 1 reduction in interference.

TABLE I

Stub Type	LENGTH (l I) IN INCHES
Quarter-wave open (300-ohm lead)	$l=\frac{2,425}{\mathrm{f}}$
Half-wave shorted (300-ohm lead)	$l=\frac{4,850}{\mathrm{f}}$
Quarter-wave open (75-ohm coaxial)	$l=\frac{1,950}{\mathrm{f}}$
Half-wave shorted (75-ohm coaxial)	$l=\frac{3,900}{\mathrm{f}}$

Tunable stubs

A type of stub used quite often for its greater efficiency and its comparatively short length, is the tunable absorption stub. Assuming that the receiver uses 300 -ohm transmission line, the stub is constructed from two pieces of the same line. The pieces are cut to a length slightly longer than that computed from the approximate formula

$$
l=\frac{450}{\mathrm{f}}
$$

where l is the length of each piece in inches and f is the interference frequency in megacycles.

After cutting off about an inch of insulation from both ends of each piece, they are placed parallel to each other, as shown in Fig. 5-a, leaving enough room between the pieces to permit the transmission line to the receiver to pass through. Referring to the figure, wire 1 is soldered to 2,3 to 4,5 to 6 , and 7 to 8 . Make sure that the calculated length l is not changed when soldering the wires. The finished stub is shown in Fig. 5-b. Two capacitors are inserted across the parallel connection. One is a 7-45-uuf variable ceramic (zero temperature coefficient) to make the stub tunable; and the other is a 15- or $20-\mu u f$ fixed ceramic capacitor.

To install the stub, disconnect the transmission line temporarily from the receiver antenna terminals and run it through the center of the stub, as shown in Fig. 6. The stub should be at least one foot from the antenna terminals of the receiver, because the stub has a tendency to re-radiate.

If the interference is very strong, one stub may not reject it completely. In such a case, more than one absorption stub can be used, along the transmission line. The spacing between stubs is not critical, although they should not be too close to one another. Each stub is tuned separately to the interference frequency. When tuning one stub, all others must be made inactive by wrapping them tightly with tin or aluminum foil.

END

Fig. 3-Stubs may be switched ont of circuit if harmonics fall on desired channel frequencies. Switch musi have low capacitance between contacts for minimum absorption in open position.

Fig. 4-Inserting resistance as shown reduces stub Q. See text for details.
C-VaRIABLE CAP; CI-FIXED CAP; S-SOLDER

Fig. 5-Steps in constructing a tunable absorption-type stub. (a) Identical "sandwich" layers before joining. (b) Connections of completed stab. Formula for length l is given in text.

Fig. 6-Stub installed on transmission line. Note spacing from receiver input.

Fig. 1-Locations of observers reporting TV dx reception.

Fig. 2-Average of TV dx reports by band and distance.

FOR several years reports of long distance reception have been coming in from television viewers. Most frequently these receptions have spanned distances of around 1,000 miles. There has been considerable speculation as to whether such abnormal reception is tropospheric in origin or transmitted via the sporadic-E region of the ionosphere. The type of evidence considered here leads one to conclude that transmission paths up to 500 miles can, roughly speaking, be attributed to tropospheric propagation, while sporadic-E accounts for transmissions between 500 and 1,600 miles. The importance of such reception to television service in the United States lies not so much in the service gained through the long-distance reception itself but in possible interference to a station's fringe area from distant co-channel stations.

Some expected differences between tropospheric and sporadic-E transmission:

First, skip distance does not apply to tropospheric propagation, while it does appiy to sporadic-E. Tropospheric phenomena become more important as frequency increases, while sporadic-E reflections decrease with increasing frequency. Signals supported by the troposphere decrease with path length, whereas those due to sporadic- E will be most numerous at distances of around 1,000 miles. This is due to the fact that although the skip distance curve would give us an increasing number of possible receptions up to the maximum distance for single-hop propagation, low radiation angles of transmitting and receiving antennas have an opposite effect.

Extraordinary tropospheric propagation over long paths depends on conditions obtaining over a large extent of the path, whereas sporadic- E transmission depends on the ionospheric conditions over the path mid-point only. Sporadic-E can be a highly localized phenomenon, so if mid-points for a short time interval form a tight cluster on a map, sporadic-E rather than tropospheric propagation is indicated. Further evidence that sporadic-E is responsible for abnormal reception is obtained when reception mid-points are found falling close to the location of an ionosphere sounding station and when at the time of the television reception sporadic- E is identified on the ionosphere sounder.

R-E TV dx reports used

The data utilized in this study were taken from the file of listener reports of Radio-Electronics magazine.

on TV RECEPTION
 By ERNEST K. SMITH, JR.*

Fig. 4_TV dx reports by days for the period May 22 -September 25, compared with the hours per day of vertical-incidence sporadic-E reflections at Washington, D.C. Note low-band peaks in June and July, months of maximum sporadic-E.

These data contained 456 reports of receptions of stations on the various TV channels over distances of greater than 200 miles. These reports were submitted by 103 persons and covered the period from May 22 to September 25, 1950. The crosses on Fig. 1 mark the locations of the observers. Cities with operating television stations are shown by circles. The channel numbers of operating television stations are shown for each city.

Shown in Fig. 2 is a histogram of the number of reports falling in the various class intervals of distance. The vast majority of reports are seen to fall in the $500-$ to 1,600 -miles grouping and to consist almost wholly of reception of low-band ($54-88 \mathrm{mc}$) stations. Note that in the 200 - to 500 -mile range there are receptions of high-band (174216 mc) as well as low-band stations and that there is a decrease with distance, so that reports on both bands drop to a minimum at 500 miles. The former (high-band) group is believed to be troposphere-propagated; sporadicE reflections could be responsible for the latter.
When the number of reports in the two distance divisions are plotted by channel as shown in Fig. 3, two apparent difficulties arise. In the 200 - to 500 -mile grouping, at the top, the number of reports appears to decrease with increasing channel frequency. The reverse would be expected for tropospheric transmission. In the $500-1,600-$ mile grouping, channel 4 rather than channel 2 received the greatest number of reports. However, there are more stations on channel 4 than on any other channel and also more low-band than

[^3]Boulder, Colorado

Fig. 5-Geographical distribution of path mid-points during period of maximum low-band dx activity. Note concentration in Great Lakes area, corresponding to path of sporadic-E cloud cited by Ferrell and Gerson. See text and footnotes.
high-band stations. If the number of reports for each channel is prorated by the number of stations operating on the channel, the distribution seen in the lower two charts is obtained. The highband values now exceed the low-band ones for the 200 - to 500 -mile range, as would be expected for tropospheric transmission, and the values decrease with channel frequency in the 500 - to 1,600 -mile range as would be expected for sporadic- E^{1}.

Fig. 4 is a chart of the number of reports per day for the period (May 22 to Sept. 25). The low-band reports are plotted in the upper histogram, the few high-band reports in the lower one. The number of hours of vertical-incidence sporadic-E reflections at Wash-
ington, D. C., obtained at frequencies above 5 and 10 mc is shown in the center histogram. As the separation of the average mid-point from the Washington ionosphere sounder is almost a thousand miles; the day-by-day correlation between low-band reports and sporadic-E is about as good as could be expected. On a monthly basis, it should be noted that the greatest numbers of low-band reports occur in the months of June and July. These are also the months of greatest incidence of sporadic-E over Washington, D. C.

There are several days with an exceptionally large number of low-band reports. July 16 in particular has 40. Note in Fig. 5 that on July 16 the mid-points form a dense cluster be-
tween Lake Michigan and Lake Erie. This looks like a sporadic-E cloud of the type reported by Ferrell and Gerson ${ }^{2}$. The cloud appears to have persisted for about four days from July 15 through July 18.
Shown on the upper map in Fig. 6 are points representing the loci of all possible mid-points between the 103
observers and the cities in or near which the television stations are located. The circles on the two maps represent the locations of ionosphere sounding stations from which overhead sporadic-E data might be available. In the lower map the mid-points of the reported TV dx receptions are presented. Also a certain number of the

Fig. 6-(a) Locations of all possible path mid-points between dx observers and TV stations. (b) Path mid-points of actual dx receptions reported. Circles on both maps indicate the locations of U.S. Government ionosphere-sounding stations.
mid-points seem to be located close to the Washington ionosphere sounder. Four of these fall on the same day, June 27.

The location of these four mid-points is indicated in Fig. 7 with the location of the ionosphere station at Washington. Fig, 8 is a 1-day chart of sporadic-E recorded at Washington, D. C. (solid curve), along with the occurence times for the mid-points plotted at their equivalent vertical critical frequencies. The coincidence is certainly striking.

Summary of results

To summarize the findings then: the distribution of reception reports by distance indicates that two distinct types of propagation are indicated for transmissions greater than 200 miles. One type seems to disappear at around 500 miles, which happens to be the point at which the other type becomes noticeable. This second grouping contains about 90% of the reception reports over distances greater than 200 miles. When plotted as number of reception reports per station operating on the channel, the distribution by channel predominates in the high band for the 200 - to 500 -mile grouping as expected for tropospheric propagation, and decreases progressively with channel frequency for the $500-$ to 1,600 -mile group as would be expected for sporadic-E. When compared to sporadic-E at Washington, D. C., on a day-to-day basis, the low-band reports and sporadic-E are seen to have a similar seasonal distribution. Not so the high-band reports. This is as expected, for they appear (with a single exception) in the 200 - to 500 -mile group. The path mid-points of the day for which the maximum number of receptions were reported are seen to form a tight cluster as they would if reflected from a slowly moving sporadic-E cloud. A coincidence test for a day when four of the reception paths over 500 miles in length resulted in mid-points near Washington, D. C., showed excellent simultaneity with observed sporadic-E in three of the four cases.

Lisł of References

'For a similar chart see E. P. Tilton, Rado-ElectronICs, Vol. 22, No. 8,28 (May, 1951).
2 O
29
${ }^{2}{ }^{2}$ (1948). Perrell, Proc. ${ }^{2}$. FE, 35, 493 (1947): 36, 879 (1948).
N. C. Gerson, Nature, 116, 316 (August 19, 1950): Proc. Cont. lónosph. Phys., Pennsylvania State Col-
lege, $20 \mathrm{CC}(1950)$. lege, 2, 20CC (1950).

Fig. 7 (above)-Four path mid-points of TV dx reported in one day near Washington, D.C. Fig. 8 (right)-Hourly record of sporadic-E on the same day.

ISENDYOU $18:$ BICTTS

of Eadio Tclevision parts and equipment. -ion and ixpermentation be actual construcPRACTIEAL Instruction that prepares you ar your fadio-Television career.

s With Training
The new Sprayberry "package" plan includes many big kits of genuine, professional Radio-Television equipment. You perform over 300 demonstrations, experimerits and construction projects. You build a powerful 6-tube 2 -band radio set, multi-range test meter, signal generator, signal tracer, many other projects. All equipment and lessons are yours to keep . . . you have practically everything you need to set up your own
Valuable Equipment Included
> profitable Radio-Television service shop.

NEW! NO OBLIGATION PLAN

You Have No Monthly Payment Contract to Sign Pay For Your Training as You Earn and Learn You can get into Radio-Television, today's fastest growing big money "pportunity field, in months instead of years! My completely new "package unit" training plan prepares you in as little as 10 months or even less! No monthly payment contract to sign-thus NO RISK to you! This is America's finest, most complete, practical training-gets you ready to handle any practical job in the booming Radio-Television industry. Start your own profitable Radio-Television shop ... or accept a good paying job. I have trained hundreds of successful Radio-Television technicians during the past 21 years-and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts - FREE!

Earn Extra Money While You Learn!
All your 10 months of training is IN YOUR HOME in spare hours. Keep on with your present job and income while learning. With each training "package" unit, you receive extra plans and "Business Builder" ideas for spare time Radio-Television jobs. New television stations everywhere, open vast new opportunities for trained Radio-Television Technicians-and those in training. If you expect to be in the armed forces later, there is no better preparation than practical Sprayberry Radio-Television training.

SPRAYBERRY ACADEMY OF RADIO $\begin{gathered}\text { I11 North chant sT: } \\ \text { Dept. } 20-\mathrm{X}, \text { chicago } 6 \text {, III: }\end{gathered}$

> YOU BUILD
> the Television set and The powarth supert.et radto recelver show Above. IN ADDITION to the other test unit lack of epacm, All equipment I senc you is YOURS TO KEEP

MAIL COUPON TODAY! NO OBLIGATION

I invite you to get all the facts-

- I want you to have ALL the fazta about -without cost! Rush coupon for my three big Radio Television books: "How to Make Money is RadioTeleviaion." PLUS my new Muatrated Television Bual FREE. No obllgation and no saleaman whill call. Mail coupon NOW!

SENSITIVE

 - CAPACITY
RELAY

By E. W. SCOTT

Top photo-The back cover of the relay housing carries input and output connections and the sensitivity control. Center photo-Internal assembly of the relay unit. Large components may be mounted wherever convenient. Bottom photo-Arrangement of components and controls on the chassis top.

The front panel of the capacity relay. provides protection
against intrusion or
accident-control of
industrial operations
-or just plain fun

THis inexpensive little electronic gadget can perform innumerable tasks in your home, office, plant, or store; or provide entertainment for you and your friends. Called a "capacity relay"-the home-front equivalent of a proximity fuse-it will close an electric-alarm circuit the instant any person, large animal, or any large metallic or nonmetallic object enters the electric field surrounding its antenna or "feeler."

The unit operates from standard 117 volt, 60 -cycle a.c. lines, and the parts are obtainable at any well-stocked radio supply house. The foundation is a $6 \times 6 \times 6$-inch metal utility box with attached chassis (Bud type C-1798 or equivalent). The general layout is shown in the photographs. Drill holes in the front panel for the shafts of the variable capacitor (ANTENNA LOADING control) and the rotary (SELECTOR) switch. Be sure to use an insulated bushing when mounting the variable capacitor because it must be insulated from the panel and chassis.

If the 6.3 -volt filament transformer T1 and the relay RY that you purchase differ in size and shape from the ones used in this particular job, mount these components wherever they fit best. The position of these components is not critical, so any convenient spot will do. If your relay is a large one, mount it on the rear cover and connect it to the circuit with flexible hookup wire. Study the photos for the locations of the other components. If you must shift the positions of some of them, the holes for the receptacle, sensitivity control, antenna, and line cord may have to be relocated.

After mounting all the components, wire the circuit as shown in the schematic diagram (Fig. 1).

HEATHKIS for the ENGINER

\#eathkit visual aural SIGNAL TRACER KIT

${ }^{5} 2^{5}$.
Shipping
Wf. 10 lbs .

Designed especially for service applications in AM SW-FM-TV repair work. RF and audio two channe input. More than adequate sensitivity-new noise lo-wattmeter-substitution watmeter-visual signal indication. Can be used with scope and VTVM, checks phono cartridges, phono mechanisms, microphono mechanisms, microHeathkit Visual Aural Signal Tracer help you.

\#eathkit

CONDENSER CHECKER KIT
An instrument designed solely for its particular job. Not a instrument. Measures value and quality of unknown condensers qual resistors Capacity range 00001 mfd to $1,000 \mathrm{mfd}$. Resist ance range 100 ohms to 5 meg ohms. Sensitive electron beam indicator-five polarizing test voltages-safety spring return leakage test switch. An amazingly accurate in-
strument at this low price. strument at this low price.
$\$ \square^{\circ}$

Heathkit

 SIGNALGENERATOR KIT
 MODEL SG-7 $\$ 1950$ Ship. Wt. 8 Lbs. A service must" is a reliable source of modulated (400 cycles) or unmodulated RF output Frequency range 150 KC to 150 MC Step attenuated and High output level and performance with low cost.

Heathkit laboratory regulated POWER SUPPLY KIT

MODEL PS-2
$\$ 2950$
ship. Wi. IT Lbs.

A regulated variable 160 450 volt DC output power supply for the lab or service' shop. Accurate voltage and current measurements with large Simpson meter. AC supply 6.3 volts at 4 amperes-standby swime. Low hum content-5 tube circuit. AC and DC output voltages isolated from panel for maximum operational for maxim
flexibility.

MODEL TC-1
$\$ 2950$
Shipping Wf. 12 lbs .
Revised Roll Chart . 50

Heathkit

VIBRATOR TESTER KIT

Checks for starting and quality of interrupter and self rectifier type vibrators. Five socketschecks hundreds of types. Operates from tery eliminator.
 $\$ 1450$
Shipping Wf. 6 lbs .

Heathkit

 AMATEUR
TRANSMITTER KIT

MODEL AT-1

$\$ 2950$

Shipping Wf. 15 lbs .
Here is the long a waited Heathkit entry into the amateur radio field. The Heathkit AT-1 ransmiter kit is a transmitterned basic ing many desirable features and providing maximum overall performance
Convenient band switching eliminates the bother and annoyance of plug in coils. It is merely necessary to switch to the desired frequency and plug in your favorite crystal or mitter features a self-contained power supply mounted on the same chassis and cabinet enclosed to minimize TVI. AC line by-passed to reduce radiation.

The coils supplied with the Heathkit AT-1 are pre-wound and ad justed for the necessary frequtire kit is supplied complete with all tubes, coils punched and formed chassis and cabinet as well as all constructional material required. A detailed

$\$ 2950$ Ship. Wt.

True square wave output with frequency range 10 cycles to 100 KC . High variable output voltage level 0-20 volts at 600 ohms output impedance Provisions for externa synchronization. The service work and wide band amplifier circuit development

Racke INPTRMATIONAL COR:
NEw rem isk city (16)

GERVICEMAN -AMATEUR•SIUDENT

Freathkit DECADE

 RESISTANCE KIT cision resistors in 1 ohm steps from 1 to 99,999 ohms. Sturdy ceramic wafer switches featuring silver plated contacts and smooth posi tive detent action.
$\$ 1950$

 intermodulation analyzer kit

Freathkit

Intermodulation distortion analysis is one of the most satisfactory methods of checking audio equipment. The IM- 1 features two self contained high freguency generators (3,000 and 7,000 cycles) a 60 cycle low frequency source, intermodulationsection, AC
VTVM, and power supply all in one com. suppte unit. Direct reading IM percentages on
3 calibrated scales 30% $-10 \%-3 \%$.

A typical Heathkit in-
vasionof the laboratory
instrument field. Here is the first successful is the first successful offered in kit form. Oscillator supplies RF in the range of 150 KC to 18 mc . Reads Q directly on calibrated meter scales. Measures \mathbf{Q} of condensers, RF resistance and distributed capacity of coils. Calirange of 40 mmf to 450 mmf with All measurements made at the opermade at the oper-
ating frequency

MODEL BG-1
$\$ 14^{50}$
Ship. Wt. 6 lbs

The Heathkit BG-1 Bar
Generator represents another welcome addition to othe fast growing line of popular Heathkits. The station transmitted test pattern is rapidly disappearing and the Bar Generator is the logical answer to the TV serviceman's probem in obtaining quick accurate adjustment information.
The Bar Generator produces a series of horizontal or vertical bars on the TV screen. These bars are equally'spaced and will quickly indi cate picture linearity of the receiver under test. Since picture linearity is independent of transmitting frequency, it is unnecessary to provide coverage throughout the VHF range, thereby holding down instrument cost.

The Heathkit Bar generator is simple to use and is extremely portable, providing a quick means of checking the television receiver either in your workshop or in the customer's home.

MODEL BE-3 Ship. Wi.
17 lbs. 240

Heathkit AUDIO OSCILLATOR KIT MODEL AO-1 $\$ 2450$
Ship. Wt. 11 lbs.
Features sine or square wave coverage from $20-20,000$ cycles in 3
ranges. Variable 10 volt output level at 600 ohms impedance. Thermistor controlled linearity-precision multiplier resistors-distortion less than $.6 \%$. An outstanding instrument value at this amazing low price.

Heathkit

AUDIO FREQUENCY

 METER KITIndicates audio frequency on large 41/2" Simpson meter. Ranges 10 cycles to 100 kc at input voltage level of 3wave shape is not input wave shape is not at all line testing-indicating square wave frequency-determining generator output. Operation entirely electronic, no vibrating reeds.

Ship. Wf. 12 lbs .
Hearhkit
DECADE CONDENSER KIT

AUDIO GENERATOR KIT
A new extended range 18 cycles -1 megacycle audio instrument at a remarkably low price. Five con able output ran ges- 600 hm ges-impedance low distortion figure, less than $.4 \%$ from 100 cps through audible range:

Ship. Wt. 11 /bs.

Heathkit

 TELEVISION SWEEP GENERATOR KIT Frequency coverage $10-90$ mc and $150-230 \mathrm{mc}$. Variable sweep width $0-12 \mathrm{mc}$, buit in absorption type marker, able output and blanking able ouMODELTS-2 Ship. Wt. 5650
20 lbs.

WRITEFOR Free CATALOC

New 32 page 1953 Catalog lists all kits, specifications, schematics
and latest price information.

BENTON HARBOR 20, MICHIGAN

HEATH COMPANY - Benton Harbor 20, Mich.

Adjustments

To operate the unit, plug in the line cord and plug a test lamp-an ordinary table lamp will do-into the receptacle on the rear of the relay. Throw the SELECTOR to ON. Allow about 15 seconds for the unit to warm up. The test lamp will probably come on and remain lighted for a few seconds, and then go off. Connect a length of flexible wireabout 6 feet-to the antenna terminal on the rear. Rotate the sensitivity Control so its arm, the No. 2 terminal, is against the No. 1 terminal. Back off the control until the relay opens and the light goes out. Now adjust the ANTENNA LOADING control slowly so the light comes on again. Back off the control a hair so the light goes off. Bring your hand near the wire and the light will come on and remain lighted until you remove your hand. Make fine adjustments with the two controls for maximum sensitivity. The light should come on when your hand is within 12 inches of the wire.

Alarm circuits

Take a longer wire and form it into an inverted U around the casing of a door. Connect one end of the wire to the antenna post and adjust the loading control to the point where the light comes on. Back off the control until the light goes out again. Walk toward the door. The light should come on when

Fig. 1—Schematic of the capacity relay. Parts layout is shown in the photographs.
you are about 4 feet away. If you must be much closer before the relay operates, make minor adjustments with the SENSITIVITY and ANTENNA LOADING controls until you get the desired sensitivity,

As long as the selector is set at on, the light should go off when you back away from the door. To have the light remain on even after you leave the door, throw the SELECTOR to AUTO. When it is in this position, the alarm circuit will remain closed until you open it by throwing the SELECTOR to ON or OFF.

Afier adjusting the relay to your satisfaction, you can connect it to a doorbell alarm as shown in Fig. 2-a or 2-b. In Fig. 2-a the alarm bell is operated from the power line. If an intruder should manage to cut the
power lines outsice the house, the alarm will not ring. In Fig. 2-o the power for the alarm circuit comes from four No. 6 dry cells in series. If the power fails, the relay will open and start the alarm ringing.

If you are an apartment dweller in fear of having an intruder enter through a window on a fire escape, this little gadget will do much to reassure you. All you need do is place the antenna in a loop around the window casing or connect it to an ungrounded wire window screen. Connect the doorbell alarm as shown in Fig. 2 and your fears are over. In some installations, it may be possible to connect the antenna directly to the fire escape so the alarm sounds the instant anyone places a foot on it. In one installation, this

Yes, you get this big, brand new book, "150 Radio-Television Picture Patterns and Diagrams Explained", absolutely FREE! Just off the press! Gives complete wiring circuits and diagrams on the latest Radio and Television Sets. Easy-to-read, large $81 / 2 \times 11$ "pages, with full instructions on how to read and use the diagrams. A "must" in every Radio and Television service-man's repair kit. You get this valuable book as a FREE Gift for asking to see Coync's great new 6-book set, "Applied Practical Radio-Television"!
Here's "Know-How" That Makes You Worth More! Coyne's great new 6-volume set gives you all the answers to servicing problems-quickly! For basic "know-how" that is easy to understand, you'll find everything you want in volumes 1 to 5 which contain over 5000 practical facts and data. They cover every step from principles to installing, servicing, trouble-shooting and aligning all types of radio and TV sets. So up-to-date it includes COLOR TV and UHF, adapters and converters. Also covers very latest information on TRANSISTORS.

802-Page Television Cyclopedia Included
And then, for syeedy on-the-job use, you get volume 6-the famous Coyne TELEVISION CYCLOPEDIA. It answers today's television problems on servicing, alignment, installation and others. In easy-to-find ABC order, cross indexed. Use this 6 volume TV-RADIO LIBRARY free for 7 days; get the valuable Servicing Book ABSOLUTELY FREE! \& Diagrams. If you keep the set, pay $\$ 3$ in 7 days and $\$ 3$ per month until $\$ 22.50$ plus postage is paid. (Cash price $\$ 20.95$). Or you can return the library at our expense in 7 days and owe nothing. YOU BE THE JUDGE. Either way, the book of TV-Radio Patterns is yours FREE to keep! Offer is limited. Act NOW!

FREE BOOK - FREE TRIAL COUPON!

COYNE ELECTRICAL G TELEVISION-RADIO SCHOOL, Dept. 63-TI 500 S. Paulina St., Chicago 12, III.
YESI Send 6-volume "Applied Proctical Radio-Television'" for 7 days FREE TRIAL per your offer. Include TV-Radio Patterns \& Diagram Book FREE.
\qquad
\qquad
City . Zone. ... State.
Where Emploved ...
(${ }^{\prime}$ Check here if you want library sent Cóo. You pay postman $\$ 20.95$ plus COD postage on delivery. 7-day money-back guarantee.

Beat for UHF Fringes!

TEL-A-RAY

Fringemaster

Looking for good UHF reception in the fringe areas? Try the Fringemaster, Tel-aRay's new collinear-łype, cut to channel array built from noncorrosive Dural. Effeclively covers 20 channels.

The Fringemaster's all-grounded construelion gives positive lightning protection, reduces noise and permits a high front-to-back ratio. Also, there is no insulator loss!

List prices: No. 800 (not assembled) $\$ 10.95$; No. 800A (completely assembled ready for mounting on mast) \$12.95; No. 800D (two-bay array not assembled) \$24.95; No. 800DA (two-bay array completely assembled) $\$ 27.50$.

Write today for information on the complate line of Tel-a-Ray UHF antennas. Tel-a-Ray has a UHF antenna for every installotion problem.
 rugged Telescoping Mast. One man can do the whole job right from the bottom 10^{\prime} section.

HOT-DIPPED GALVANIZED inside and fut for in for sistance 18 gauge sistance. 18 gauge well hard tubing d. Properly d. Properly guyed, this Mast who support large high winds and under heavy ice loads.

Provides maximum rigidity against tubes twisting and loosening due to high winds. Has smoother guying sur. face, aids in erecting a straighter mast.

This unique Wincharger assembly tool safety feature warns you with a "click" when the tube has been a "click" when the tube has been
pulled out as far as it can safely go

A WINCHARGER BASE FOR EVERY TYPE ROOF

device controlled a powerful spotlight and alarm bell mounted on the edge of the roof. When anyone mounted the fire-escape ladder, the bell sounded and the light lit up the entire area.

Fig. 2-(a) Rell-alarm unit for use with capacity relay. (b) Auxiliary alarm circuit. Dry cells ring alarm bell if ac. power-line wires are cut.

Materials for relay
Resistors: $1-8.2$ megohms, $1 / 2$ watt; 1- 47 ohms, 2 watts; $-4,000-\mathrm{hm}$ wirewound potentiometer. Capacitors: $1-100 \mu \mu \mathrm{f}$, mica or ceramic: $1-.0025$ ut paper: $1-4$ af, $1-8$-hf. 350 volts, electrolytic: 1-100- or $140-\mu \mu \mathrm{f}$ air variable.
Miscellaneous: I- $100-\mathrm{ma}$ selenium, rectifier: $1-$ 6SJ7: 1-2050; I d.c.-operated Inlay, 8.000 -ohm coil s.p.d.t. contacts; 1-2-pole, 3-position, shortingtype selector switch: $1-6.3$-volt, 1.2 -amp filament transformer; $1-20-\mathrm{mh}$, center-tapped r.f. choke (J. W. Miller type 691-T or equivalent); 2 octal sockets: 1-a.c. power receptacle; cabinet; line cord and plug: terminals, hardware, wire. solder.
Optional parts' (Fig. 2) 1-6-10-volt doorbell; 16 -10-volt bell transformer; $4-$ No. 6 dry cells: 1-a.c.-operated relay, $1 \mid 7$-volt coil, s.p.d.t. confacts: line cord and plug.

Of course, the capacity relay can be hooked up to other types of indicators, or applied as a safety device in industrial operations. For example, anyone approaching a dangerous part of a machine tool or a high-voltage electrical installation would actuate the device automatically and shut off the power.
For maximum sensitivity, the antenna should be as short as practical. For this reason, always install the relay unit as close as possible to the area to be protected. If you must use a long antenna or if you have it connested to a large metallic body, the relay may not operate properly unless you connect a 100 - or $200-\mu \mu f$ mica capacitor in parallel with the ANTENNA LOADING control, or in series with the feeler wire.

END

"Don't these phony hypnotists kill you, Florence?"
 the first to offer you the new hermetically sealed 2N36, 2N37, and 2N38 junction transistors. Each is uniquely sealed in a metal case . . . moisture-proof, contamination-proof, light-proof. (See drawing.)

You can buy these new hermetically sealed P-N-P jurction types immediately. All are amplifier types. Have similar characteristics, except for current amplification and power gain. You may operate the $2 \mathrm{~N} 36,2 \mathrm{~N} 37,2 \mathrm{~N} 38$ up to $55^{\circ} \mathrm{C}$. Their in-line design gives you: Compact, flat mounting . . . easily identified polarity . . . solder-in or plug-in (with clipped leads) convenience.

In addition to their unique moisture-proof feature, these CBS-Hytron junction types offer: (1) High gain. (2) Low noise figure. (3) Operation at low voltages. As well as other advantages characteristic of transistors: Compactness . . . light weight . . . ruggedness . . instantaneous operation . . . and long life.
Remember, CBS-Hytron hermetically sealed 2N36, 2N37, 2N38 transistors are available at once. Write for complete data. Or order now for prompt delivery.

NOW 3 CBS-HYTRON TEST ADAPTERS. By popular demand. Three sizes now available at these net prices: 7 -Pin Miniature, $\$ 1.45$; 8-Pin Octal, $\$ 2.25$; 9-Pin Miniature, $\$ 1.75$. Take advantage of e-a-s-y "topside" testing. Order your Test Adapters today from your CBS-Hytron jobber.

AMATEUR

IN34 NBFM-PM MODULATOR By GEORGE W. MAKI

A narrow-band FM signal that tunes and sounds like AM on an ordinary receiver is certainly most desirable. With a signal like this, the operator at the other end can tune in your carrier on the nose rather than tuning to one side and losing signal strength as he has to do with most NBFM stations. Also desirable is a simple, inexpensive modulator that provides good, understandable speech with enough punch to cut through QRM.

This germanium-diode FM-PM modulator comes closer to accomplishing this than anything that I've tried before. For the modulator all you need is an r.f. choke, three fixed capacitors, and a 1N34 diode. Of course, you'll need a speech amplifier. I used an 8 -watt unit with a 600 -ohm output. Its gain control was hardly ever more than one-quarter open. A speech clipper set for about 6 db is a decided advantage but the germanium-crystal modulator works well without it.

To illustrate how easily the NBFMPM modulator can be connected to most transmitters, I pulled the driver and modulator tubes in the rig. Next, I twisted a piece of wire around the plate pin of the driver tube and pushed it back into its socket, leaving the modulator tubes out. The other end of the wire lead was connected to the audio input terminal of the diode modulator. The modulator output terminal was connected to the cathode pin of the oscillator tube in the BC-459-A used as a 40 -meter v.f.o. The installation was completed by grounding the modulator to the v.f.o. chassis. Using this connection, I tried NBFM on 20. The results were quite satisfactory.

Next, I tried phase modulation (PM) by connecting the output of the crystal modulator across the plate tank of the buffer amplifier. We could not get enough swing since there was but one doubler between the buffer and the final. However, it did prove to my satisfaction that the circuit can be used successfully for PM if you have enough frequency multiplication. For 20 -meter operation, you would probably have to run the oscillator and buffer in the 160 -meter band.

The capacitor values are not critical. Modulation swing increases as C2 and C3 are made larger. Since these capacitors are effectively paralleled across the oscillator grid or buffer plate tank circuits (for NBFM or PM, respectively), you will have to compensate for the circuit detuning which occurs when the diode modulator is connected. The detuning is particularly noticeable by a change in the calibration of the v.f.o.

1953 CENTRALAB PEC GUIDE BIGGER - EVEN MORE COMPLETE

includes 445 PEC applications - 21 stock parts covering $\mathbf{2 5 , 0 0 0}, 000$ PEC's now in use - lists 119 set manufacturers

HERE'S the only practical PEC service guide. It's a must 1 for every service shop. And it's yours absolutely free. Original equipment manufacturers have marveled at the extremely low failure percentage of PEC units as compared to individual standard components. But there are many millions of older sets in use that were produced prior to the use of PEC. Standard components in these sets can be replaced quickly and inexpensively by a single Printed Electronic Circuit Plate. If trouble is located in a certain section of a circuit, for instance, the vertical integrator in a $T Y$ set, or the Audio Detector in a radio set, instead of taking costly time to locate the exact component failure, replace the entire section with a vertical integrator or audio detectar PEC plate.
Printed Electronic Circuits, originated and developed by Centralab, are in use on 60% of today's radio and television sets. Be sure you have the new 1953 guide for fast, positive information - where and when you need it.

Centalab

A Division of GLOBE-UNION INC., Milwaukee 1, Wisconsin In Canada, 635 Queen Street East, Toronto, Ontario Your parts distributor has this guide - ask him for a copy. If he can't supply you - use the coupon.

FOR FREE GUIDE, CLIP THIS COUPON AND MAIL TODAY

- CENTRALAB, Division of Globe-Union Inc.

CENTRALAB, Division of Globe-Union Inc.
922F E. Keefe Avenue, Milwaukee 1, Wisconsin
Please send me without delay, a copy of Centralab's Printed Electronic Circuit Guide No. 2.

Jobber's Name.
Jobber's Address.
\qquad
\qquad Address.. \qquad
City. Zone..

By FRED SHUNAMAN
Managing Editor

THE official slogan of the $1953 \mathrm{Na}-$ tional Convention of the Institute of Radio Engineers was "RadioElectronics, a Preview of Progress." But even before the first day of the convention was over it had been displaced by the unofficial slogan, "The Year of the Transistor," which remained the real theme of the convention till the end. Though transistors were the subject of only two of the convention's 43 sessions, they kept bobbing up in audio, in television, in military equipment, and in most of the other subjects of the convention sessions.

Not only were new transistor circuits described, but also new types of transistors to use the new circuits. Some of them were so small that a whole audio amplifier-transistors, components, and all-could be installed in a 1 -inch piece of medium-sized spaghetti. Others were comparative giants with cooling vanes. These ranged up to three-quarters of an inch in diameter and were capable of dissipating several watts of power.

Although transistors have barely just arrived, it's evident that they're already going places.

The transistorized convention was the biggest the Institute has ever held. More than 35,000 engineers were present, as contrasted with 28,600 last year. Six parallel sessions ran for three and a half days to read and discuss more than 200 technical papers, which in turn were divided into 43 sessions, ranging through subjects as diverse as microwave antennas and acoustics.

Most popular of all sessions were those dealing with the new theme of the convention. The first session on transistors overflowed before half the intended audience had got into the hall. It had to be repeated the next morn-ing-coincidentally just when the overflow meeting would take pressure off the second transistor circuitry session.

Push-pull transistors

The most impressive new information on transistors was that on symmetrical circuits. Already described to a limited extent by RCA, the symmetrical circuit was the subject of a paper and a demonstration by Dr. George Sziklai of the RCA laboratories. As explained by Dr. Sziklai, the symmetrical circuit (CONTINUED ON PaGe 72) ing ideas and aims are held in check by everyday job requirements. Engineers made of the right "stuff" hold a secret yearning to break the shackles of today - to think in terms of the possibilities of tomorrow.

Sylvania thinks that way, too has thought so for years. As a result, Sylvania encourages its engineers to pioneer, develop, follow through on their ideas, write and speak on their chosen subject to gain professional recognition.
If you are looking for a stimulating challenge that will last a lifetime - investigate the splendid career opportunities with fastgrowing Sylvania.
Send your resume to:
JOHN C. WELD
Supervisor of Employment
254 Rano Street, Buffalo 7, New York

RADIO AND TELEVISION DIVISION 254 RANO STREET
BUFFALO 7. NEW YORK

Dr. George Sziklai of RCA holding model of the all-transistor audio power amplifier.

Fig. 1 Below--Symmetrical transistor audio amplifier. Push-pull output is obtained by feeding a $p-n-p$ and an n-p-n transistor from a sin-gle-ended signal source. The low impedance of the powertype transistors matches the speaker voice coil, and eliminates the output transformer. Note the different symbols for $n-p-n$ and $p-n-p$ transistors.

this is the way it looks fully packed

here is for reusable bex with dividers for a hundred uses at homeor wark

BUY TEST EOUTPNENT
 ON THIS RADICALLY NEW the payman plan NO INTEREST!! - NO CARRYING CHARGES!!

Superior's new model 770 AN ACCURATE POCKET-SIZE VOLT-OHM MILLIAMMETER (SENSITIVITY-1000 OHMS PER VOLT). FEATURES:
\star Compact-measures $31 / 8^{\prime \prime} \times 57 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$.
\star Uses latest design 2% accurate I Mil.
D'Arsonval type meter

* Same zero adjustment holds for both resistance ranges.

It is not necessary to readjust when switching from one resistance range to another. This is an important timesaving feature never before included in a V.O.M. in this price, range.
\star Housed in round-cornered, molded case.

* Beautiful black etched panel. Depressed letters filled with permanent white, insures long-life even with con with permanent white, insures long-life even with con stant use.

The Model 770 comes complete with self-contained batteries, tesf leads and all operating instructions.

SPECIFICATIONS:

6 A.C. VOLTAGE RANGES:
4 D.C. CURRENT RANGES:
0-15/30/150/300/1500/3000 VOLTS
0-I.5/15/150 MA. 0-1.5 AMPS
6 D.C. VOLTAGE RANGES:
0-7.5/15/75/150/750/1500 VOLTS
2 RESISTANCE RANGES:
$0-500$ OHMS 0-I MEGOHM

Superior's new
Model 670-A

a COMBINATION VOLT-OHM MILLIAMMETER PLUS

 capacity reactance inductance and decibel measurements
SPECIFICATIONS:

D.C. VOLTS: 0 to $7.5 / 15 / 75 / 150 / 750 / 1,500 / 7,500$ Volts A.C. VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 / 3,000$ Volts OUTPUT VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 / 3,000$ Volts D.C. CURRENT: 0 to $1.5 / 15 / 150 \mathrm{Ma}$. 0 to $1.5 / 15$ Amperes RESISTANCE: 0 to $1,000 / 100,000$ Ohms 0 to 10 Megohms CAPACITY: . 001 to 1 Mfd . 1 to 50 Mid . (Quality test for olectrolyties)
REACTANCE: 50 to 2,500 Ohms 2,500 Ohms to 2.5 Megohms INDUCTANCE: 15 to 7 Henries 7 to 7.000 Henries DECIBELS: -6 to $+18+14$ to $+38+34$ to +58

ADDED FEATURE:

The Model 670-A includes a special GOOD-BAD scale for checking the quality of electrolytic condensers at a test potential of 150 Volts.

USE CONVENIENT TLME PAYMENT COUPON ON OPPOSIIE PAGE

BUY OU EASY PATHENTS AI THE NII CASH PRICG

Superior's New Model 660-A an ac Operated

SIGNAL GENERATOR

PROVIDES COMPLETE COVERAGE for AM-FM \& TV Alignment SPECIFICATIONS:

Abstract

- Generates Radlo Froquencles from 100 Kllocycles te 60 Megaeycles on fundamentals and from $60 \mathrm{Mega-}$ eycles to 220 Megacycles on powerful harmonics. Accuracy and Stability are assured by the use of nermeability trimmed Hi-Q colls. - R.F. avallable separatety or modulated by the internal audio escillator. - Bultt in 400 eyele sine wave audio oscillator used to modulate the R.F. signal atso evailable separately for audio testing of recelvers. amplifiers, hard of hearing aids, etc. - R.E Oscillator Clreuft: A high transeonductance hep.

tode is used as an R.F, osclllator, mixer and amplifier. Modutation is effected by electron coupling in the mixer section thus isolating the oscillator from load changes and affording high stability. - A.F. Osèlliator Circuit: A Migh trans. conductance heptode connected as a high-mu triode is used as an audlo oscillator in a High-C Cotpitts Cireulf. The output (over I volt) is nearly pure sine wave. Attenuator: A 5 step ladder type of attenuator is used.

Tubes used: I-6BE6 as R.F. Oscillotor, mix. er and amplifier. I-6BE6 as Audio Oscilla. tor. I-6H6 as Power Rectifier.

SPECIFICATIONS:

Power 5upply: 105-125 Volt 60 Crcles
Power Consumption: 20 Watts
Channels: 2-5 on panel, 7-13 by harmenics

Horizontal lines: 4 to 12 (Variable) Vertical lines: 12 (Fixed)
Vertical sweep output: 60 Cycles Horizontal sweep output: 15,750 Cycles

TELEVISION BAR GENERATOR
 Superior's New

THROWS AN ACTUAL BAR PATTERN ON ANY TV RECEIVER SCREENI!
Two Simple Steps

1. Connect Bar Generator to Antenno Post of ony TV Antenno
Receiver.
2. Plug Line Cord into A.C. Oütlet and Throw Switch.
Result: A stable never-shift. ing vertical or horizontal pottern proiected on the icreen of the TV receiver under test.

FEATURES:

1. Provides linear pattern to adlust VERTICAL Provides linear pattern to adjust HORIZONTAL Provides linear pattern to adjust HORIZONTAL
drjve, widh, peaking. linearity, centering.
2. Provides vertical sweep signal for adjusting and Provides verileal swees signal for adjusting and
synchronizing vertieal oscillator discharge and output tubes.
3. Provides vertical signal to replace vertieal oseillafor to check vertical amplifier operation.
4. Provides horizontal sweap signal for adjusting and synchronizing horizontal oselliator A.F.C. and output tubes.
5. Provides horizontal swoep signal to check H.V. see Prot back and pulse operation Dower supblies.
6. Provides signal for testing video amplifiers.
7. Can be used when no stations are on the alr.
39^{95} COMPLETE WITH SHIELDED LEADS AND DETAILED OPER. ATING INSTRUCTIONS. ONLY

MODEL 770
Total Price $\$ 14.90$ $\$ 2.90$ down payment. Balance $\$ 2.00$ monthly for 6 montis

MODEL TV.II Total Price \$47:50 $\$ 11.50$ down payment. Balance $\$ 6.00$ monthly for 6 months,

D MOOEL 670-A Total Price $\$ 28.40$ $\$ 6.40$ down payment. Balance $\$ 3.50$ monthly for 6 months.

D TELEVISION BAR GENERATOR Tolal Price $\$ 39.95$ $\$ 9.05$ down payment. Balance $\$ 5.00$ monthly for 6 months.
\square MOOEL 660.A Total Price $\$ \mathbf{4 2 . 9 5}$ $\$ 12.95$ down payment. Bulance $\$ 5.00$ monthly for 6 months.

D 1 enclose \$....................... as down payment.

- Shin C.O.D. for the down payment.

Part of Bell Telephone Laboratories'transistor exhibit at the 1953 I.R.E. convention. The tiny amplifier described in the text is circled at the right.
is based on two dissimilar junction transistors. One is an n-p-n unit, a junction transistor with the ends negative and the narrow central "base" positive. The other is a p-n-p transistor. If these two are hooked up with their inputs in parallel, the output is pushpull. (See Fig. 1.)

These stages can be cascaded, said Dr. Sziklai, by varying the three fundamental ways (grounded-base, groundedemitter and grounded-collector) in which a transistor can be hooked up. An amplifier which contains practically nothing but the transistors and their batteries can thus be constructed. He demonstrated a six-transistor amplifier which dispensed even with the output transformer, feeding direct into the voice coil of a speaker and supplying music loud enough for dancing. Dr. Sziklai was also co-author of a paper which showed how transistors can be used in many sections of a television receiver.

Another transistor amplifier - intended for telephone use-was exhib-

Professor Grant Fairbanks (left) and Dean W. L. Everitt of the University of Illinois, demonstrate the "speech compressor".
ited by Bell Laboratories. Little larger than a match, it occupied (with 11 other components) a piece of cable about $1 / 3$ inch in diameter and less than 2 inches long. It was designed to replace a 2 -inch section of conductor in multiple telephone cable. Power for the transistor amplifiers can be carried easily by one of the conductors in the cable, and their small size would permit their insertion at many points where vacuumtube amplifiers are now impractical. This should make it possible to improve the quality of telephone transmission over many existing and future circuits.

Transistor receivers and transmitters were exhibited by RCA and General Electric Co. Frequency meters, Geiger counters, and a display of printed circuits for further miniaturization and ruggedization of transistor equipment were displayed by the Signal Corps. Raytheon showed seven brands of hearing aids using Raytheon junction transistors, and Bell Laboratories exhibited (along with the match-sized amplifier) transistor telephone-dialing equipment and three experimental transmitters, one an FM job.

General Electric's new hermeticallysealed junction transistor operates even in boiling water. J. H. Sweeney and Conrad H. Zierdt, Jr. of G-E demonstrate the new transistor in a miniature transmitter atop the coffee-maker kettle.

Here's the hardest-selling, custom-made Home Calendar ever offered to Radio-TV Service Dealers! It's tailor-made just for you! Features an appealìng illustration painted exclusively for Sylvania by a famous cover artist. Reproduced in full color and imprinted with your name and address.
Your prospects simply can't overlook this calendar. It's filled with timely hints and valuable household suggestions they'll want to keep handy. And, every time they turn the page they'll be reminded of your dependable service, skill, and experience.
Order now . . . supply limited! At only $11 / 2 ¢$ per customer per month (in lots of one hundred or more), this calendar
is truly the smartest advertising buy ever offered. But don't delay, the supply is limited! Order a couple of hundred from your regular Sylvania distributor ...TODAY! If he is out of stock, write to: Sylvania Electric Products Inc., Dept. 3R-1706, 17.10 Broadway, N. Y. 19. N. Y.
SILVANIA
$\sqrt{5}$

BrandNew- JustOff The Press!

 EREG Finus
TO ANY RAOIOMAN WHO WANTS A
 BIGGER INCOME

IW 2.WAY MOBILE radio SERIICIIG

(1s1 EDiviow mapte 1953

- Learn what 2-way mobile systems are
- Learn how servicing of 2 -way mobile equipment has become a million dollar business.
- Learn what the latest authentic FCC statistics about the growing 2 -way mobile radio systems mean to your future in radio servicing.
- Learn how smart radio servicemen are cashing in.
- Learn how you can get in on the ground floor, what the profits are, every step you take in this expanding market. This is opportunity knocking at your door. Don't miss out.

Servicing 2-way Mobile Radio Systems PAYS BIG MONEY

Here's Your Opportunity . . .
over 425,000 fixed and Mobile Transmitters in use now . . . more than 72,000 new ones licensed each year.
2-way mobile communication systems are growing 2-way mobile communication systems are growing at a phenomenal rate. The Federal Communication Commission. in its latest annual report states
that there is a total of 24,595 fixed transmithers. and 300,627 mobile transmitters. Fixed transmitters are now increasing at the rato of approximately 6,000 per year, and mobile stations are increasing at the rate of 72,000 per year.
Here in this field is your opportunity to get in on the ground floor-earn top pay-establish your own business-become independent!
Here's the Proof THAT OTHER ALERT RADIOMEN ARE Cashing In RIGHT NOW
"I know you will be pleased to learn that I have received my Rodiotelephone 2nd class license received my Rodiotelephone 2nd class, license, number. P2-12-1026. The examination seemed easie than I expected, also I know that you will be glad work with the Pacific Tel. and Tel. Company in their Mobile Division. Have been trying to get this
iob for over a vear and am convinced that only Chaparral St., Salinas, Calif.
"I want you to know that I have employment using my 2nd class license. I am employed in Janesville. Wisc., and 1 am now installing and servicing two-way radios in taxi cabs and in Wisconsin Light and Power trucks. This type of also." Lee R. Andrews. Box 485, Liberal, Kansas
'I iust received a much better iob with my com pany and the a much better iob with my company and the transfer was due elophene license. From now on, Ill be installing and repairing on our Mobile Radio sets which we have in this district." Alan N. Sterland, Box 113, Prentice, Wiseonsin
"I would like to inform you that I have made the change in employment contemplated some time ago. I am now employed by the South Caralina Electric \& Gas Co. distribution office, Mr. D. M White supt. My responsibilities now entail some 84 mobile units along with five base stations within the State. I am very much pleased with this new iob." Henry A. Coleman, 617 Medway Rd., Riverland Terr., South Carolina

We will tell you How To Cash In-no obligation
 SEND COUPON FOR FULL INFORMATION

[^4]
NEW DESIGN

A speech compressor

Leaving transistors (with difficulty) the visitor noted few of the startling disclosures and devices of earlier meetings. No radio to the moon, no dx microwave transmission. The emphasis was on solid progress along lines already partly explored. One of the most important innovations was the internal-magnetic-focus TV tube, in which both the ion-trap and the focus magnets are inside the tube. This tube was announced in last month's Radio-ElecTRONICS and is discussed elsewhere in this issue.

Another new instrument was the speech compressor described by Grant Fairbanks, W. L. Everitt, and R. P. Jaeger of the University of Illinois This device is as simple in construction as it is remarkable in operation. It is a machine which will take 10 minutes of speech or music, and turn out a tape which can be played back in a shorter time-say 8 minutes-with no appar ent change in the frequencies or other characteristics of the original speech or music

4 Rotating playback heads
h-HEAD; S-SECTION OF TAPE NOT RE-RECORDED; G-GAP BETWEEN HEADS

Fig. 2-Basic mechanism of the "speech compressor" developed at the University of Illinois. The rotating playback head contains four pickup units which move in the same direction as the tape, but at a lower speed. Program material picked up by the heads is re-recorded on a second tape. Original program in gaps between pickup heads is not rerecorded, thus cutting playback time.

Tape editors know that pieces can be cut from a tape-preferably between words but even in the middle of long vowels-when it is necessary to shorten a recording. If the pieces cut out are short enough, they have no effect on the intelligibility of the final record. This principle is used in multiplex telephony, where the system is known as "sampling" (Radio-Electronics, February, 1948).
Researchers in a psychology project at the University of Illinois had been studying certain aspects of speech by a method which required snipping little pieces out of the tape at regular short intervals. Cutting the tape by hand was

PROOF OF PERFORMANCE:

ULTRATUBE and other twin-lead constructions were tested under both wet and dry conditions. The data clearly show that for clear, strong signals under adverse weather conditions, no transmission line gives better reception than Synkote ULTRATUBE.

SEALING THE ENDS:

To seal the inside of "ULTRATUBE" against moisture, simply heat the ends with match or cigarette lighter, then clamp shut with pliers. This must be done or reception will deteriorate.

For Unexcelled
UHF Transmission Under All Weather Conditions

Look at this cross-section of Synkote "ULTRATUBE". Note how the conductors are spaced equidistant from the outer insulation by several millimeters. This means that no matter how encrusted with salt or moisture the insulation becomes, the magnetic field between the two leads is practically unaffected - and signal strength is undiminished all the way down the line. For UHF - for better VHF - for fringe area reception, - there's nothing finer than Synkote "ULTRATUBE"!

Ask your Plastoid representative for samples of Synkote "ULTRATUBE" - for ultra-high frequency but not at ultra-high prices. Catalog No. PP 4911.

Television set owners aren't happy when the set goes out on a big night and the antenna is ruined because an inferior mast failed from inside corrosion or high winds during a storm.
That's why more and more smart service men are protecting their reputations for good work by installing J\&L Perma-tube TV masts. They've found that-1. PERMA-TUBE is made of special high-strength J\&L steel that stays up in storms that flatten masts of conduit or other types of tubing. 2. PERMA-TUBE is pretreated with vinsynite and then coated inside and out with a metallic vinyl resin base. The result-corrosion proof masting that doesn't weaken or cause ugly rust streaks on the customer's home. 3. PERMA-TUBE is easy and economical to install-the only mast with both ends of the joint machine fitted.
You can get PERMA-TUBE in standard lengths, diameters and wall thicknesses. Write today for complete information and the name of your nearest distributor.

HERE'S INSIDE INFORMATION ON WHAT CORROSION DOES

Section of ordinary conduit tubing used for TV masts after 96 hours in a salt spray test (A.S.T.M. Designation B-117. 49T) to accelerate corrosion. Extensive rust inside the mast has reduced strength-caused rusty water to droin onto the owner's home.

Section of PERMA-TUBE after 500 hours salt spray test shows no evidence of corrosion. Strength has been retained and the chance of rust streaks on owner's home are eliminated. Note sturdier wall thickness of Perma-tube somple.

FOR COMPLETE INFORMATION MAIL THIS COUPON TODAY

NEW DESIGN

slow and difficult work, and they sought a way of doing it automatically. The result of their search was a machine which does far more than they had originally expected.

The instrument is a much modified tape recorder. It has a standard recording head, on which a tape can be recorded in the usual way. This tape then passes over a rotating playback unit. The signal picked off the tape by this playback unit is not fed to a loudspeaker, but recorded on a second tape.

It is the rotating playback unit that does the compressing. It carries four playback heads (Fig. 2) so that one of them is in contact with the tape nearly all the time. If this unit is kept stationary, so that a single playback unit is in contact with the tape, it will act like a standard head, and the program or the second tape will be a faithful reproduction of the first. If it revolves at the same speed as the tape, there will be no relative motion of tape with respect to the head (the tape will be stationary as far as the head is concerned), and nothing will be recorded. But, if the unit revolves slowly in the direction of the tape, the effect is just the same as if the tape is slowed down. For instance, if it moves one-fifth as fast as the tape, it will take any part of the tape 20% longer to pass the head. Four-fifths of an inch of recording on the original tape will then be recorded over a full inch of the second one. Of course, the frequencies of the voice and music recorded on the second tape also will be 20% lower than on the original one.

When one of the four heads reaches that point in its rotation where it leaves the tape, the one behind it comes into contact with the tape and starts recording, so the recording of the second tape is uninterrupted. But there is a slight gap in the first tape between the point where one of the heads cuts out and the next takes over, so that regularly spaced little bits of the first tape will not be recorded on the second tape. These bits are effectively "cut out" of the tape.

Now if tape No. 2 is speeded up and played back in four-fifths of the time

"I told you television wasn't here to stay."

Heres how to increase your

Auto Radio Repair

Business!

THE COMPANY

The Hughes Laboratories, located in Southern California, are presently engaged in the development and production of advanced radar devices, electronic computers and guided missiles.

THE OPPORTUNITIES

Opportunities are offered for men who will perform interesting work on development of intricate new devices in close association with outstanding scientists. Activities em-
brace a variety of challenging problems which require originality and afford unusual possibilities of progress in learning.

FIELDS OF WORK

The work includes such fields as those involving Servo Mechanisms, Computers, Microwave Tubes, Pulse Circuitry, SolidState Physics, Miniaturization, Antennas-Waveguides, Heat Transfer, Hydraulics-Gyros, Test Equipment, Subminiatur-
ization, Stress Analysis, Instrumentation, Structures, and Precision Production Mechanisms.

vour future

Working experience in advanced techniques employing the above fields will increase your value to the Company as it further expands in development of electro-mechanical devices. Large-scale use of electronically controlled systems in business and industry is a certainty within the next few years.
it took to record, the lowered tones come back to the original frequencies, and the replay takes 20% less time than the original recording. The space discarded on the first tape is turned into discarded time on the second one.

The compressor is likely to be a godsend to radio directors faced with programs that run over appointed time. It will have a use also in speeding up military messages, and at the same time make them harder to read. Worked in reverse as a "speech stretcher." it will enable students of foreign languages or musical compositions to slow down their subject matter without changing the frequencies of the original.

Everybody's TV transmitter

Television was the subject of a number of sessions in the convention, but the most impressive TV development described used no new principles, but rather made old ones available in a new and ingenious way. This was a midget television camera that can make eny home television receiver into a closed-circuit TV system. It includes a control box with a number of plugs which fit in certain tube sockets on an ordinary TV receiver.

The camera can be set up near a child's crib, in a nursery, or even pointing at the glass door of the kitchen oven. A switch on the receiver enables the viewer to watch either regular TV programs or the scene on which the camera is trained. Thus a housewife could watch TV while making sure that everything was normal in the nursery (or that the roast was progressing normally) by switching to closed-circuit every few minutes.

Dr. Zworykin, who considered the device important enough to present in person, said that though the research laboratory could not guess how soon the device might be placed on the market, or what the price would be, he could see no reason why the cost of the control unit and camera should be greater than that of the TV receiver itself.

The applications to education, business, and low-cost industrial uses are almost too obvious to need mention. Dr. Zworykin mentioned especially the small shop or store, where the sole proprietor might be doing work away from the store area (for example, at a service bench). The viewer could keep him in formed of all customers, saving needless trips to the front of the store.

Speech stretchers, home-TV closedcircuit systems, and internal-focus picture tubes made the greatest impression on the less scientific of the convention's visitors. Engineers and physicists were attracted even more by information theory, computer problems, telemetry, and instrumentation. Acoustics and medical electronics also received more attention than at any previous convention. While nothing startling came out of any of those sessions, it is safe to say that they are the groundwork for new discoveries and new inventions that will be announced at future IRE meetings.

END

HERE are additional details on the new G-E internal-magnetic-focus picture tube described in the "Radio Month" column of the May issue. The first type in production-the 21JP4-is an all-glass rectangular tube with standard 70° deflection and a $191 / 8 \mathrm{x}$ $137 / 8$-inch picture. The 21JP4 has an external conductive coating and standard 5 -pin duodecal basing. The maximum ultor-voltage rating is 20,000 , but the value recommended for TV operation is $14,000 \pm 2,000$ volts. The built-in Alnico-V focusing and ion-trap magnets will give optimum spot size and brightness over this range.

A small magnetic shunt can be mounted on the neck of the picture tube for extremely critical focusing, or for operation at ultor voltages higher or lower than the recommended values.
The 5AW4 announced last month by CBS-Hytron is a full-wave, filamenttype rectifier intended as an extra-heavy-duty replacement for the 5U4-G. In addition to higher average and peak current ratings than the $5 \mathrm{U} 4-\mathrm{G}$, the 5AW4 has a heavier filament and a new plate structure which reduces the possibility of plate-filament shorts when the set is operated on its side. Tentative ratings of the 5AW4 are: Filament, 5 volts at 4 amp ; average d.c. output current, 250 ma max.; peak d.c. output current, 750 ma .
Both CBS-Hytron and Sylvania have announced the 6 T 4 , a 7 -pin miniature

6T4 miniature u.h.f. oscillator triode.

IT'S HERE! The NEW IMPROVED DAVIS SUPER-VISION

ALL-CHANNEL TELEVISION ANTENNA For FRINGE AREA and DX

Brings in the Signals STRONG and CLEAR up to 125 Miles and More Away from the Station

The new DAVIS SUPER-VISION

has been WIND-TESTED and WEATHERIZED
...STURDY BUILT and STRENGTH-INCREASED
so it will stand the guff in any part of the country

"The Original Antenna Sold With A Money-Back Guarantee
Built By America's Fastest Growing Antenna Manufacturer
AT YOUR JOBBERS, or MAIL COUPON TO:
 DAVIS ELECTRONICS 4313 West Magnolia Blvd., Burbank, California SIRS: RUSH INFORMATION TO ME AS CHECKED SIRS: RUSH INFORMATION TO ME AS CHECK
BELOW:
\square Send Free Technical Data on new SUPER. Send Free Technica
VISION ANTENNA.
\square Send Name and Address of NEAREST JOBBER. Name Street City

SAVE MONEY ON INSTRUMENTS!

How to test with fewer instruments.

How to use old instruments in new ways...
How to select the in. struments you need...

How to evaluate iestrument readings and put them to practical use.

BASIC ELECTRONIC TEST INSTRUMENTS

by Rufus P. Turner
254 pages, 171 illus., Price $\$ 4.00$
Written especially for servicemen, amateurs and experimenters, this new book is a complete training course in instruments. Over 60 instruments-from the most modern TV pattern generators to grid-dp oscillators and specialpurpose bridges-are fully explained. Work-saving short cuts are outlined. You learn how to put your old instru ments to new uses and thus avoill buying costly new ones. Tells all about current and voltage meters; ohm-meters and V-0-M's; V-T volt meters; power meters; oscilloscopes; r-f test oscillators; signal tracers; tube testers; TV linearity pattern generators and dozens more.
READ IT 10 DAYS . . . at our risk
I Dept. RE-63, Rinehart Books, Ine.,
I Technical Division,
| 232 Madison Ave., New York 16, N.Y.
Send Turner's BASIC ELECTRONIC TEST IN | keep hook. I will then renit $\$ 4.00$ plus postage in fut payment. Otherwise, I will retura book postpaid and | owe you nothing.
| Name.
| Address
| City, Zone, State

Sangamo's dry tubular electrolytic capacitor

Type MT and MTD electrolytic capacitors, "Chieftains" of the Sangamo line, are contained in hermeticallysealed round aluminum cans and are tightly encased in heavy cardboard sleeves on which polarity is clearly indicated. Double, pure paper spacers assure adequate breakdown characteristics and all sections are tightly held in place within the container. Multiple staking connects the terminal tabs to
the electrodes, providing permanent low resistance contact throughout the life of the capacitor. The low voltage units are supplied with etched cathodes to maintain uniform capacity when the capacitor is subjected to heat and high ripple currents. The small size of the "Chieftains" makes them a "natural" for application in tight spots beneath a chassis, and the bare tinned-copper wire leads make them easy to mount.

Your own trial-use will convince you that new standards of dependability and longevity have been built into Sangamo Electrolytics. Order from the new Sangamo Capacitor Catalog No. 800A which is yours for the asking, and without obligation.

Thase whoknow ... choose Sangamos

SANGAMO ELECTRIC CO.
MARION Hanois

PRES.
PRES:
PROBE

CONDENSER TESTER

Finds Infermittent Condensers Instantly
Pres-probe's sliding tip NET with variable resistance prevents condenser healing. Tests with power on. Requires no adjustment. Stops guesswork. Sayes time. Convenient probe size ($71 / 8^{\prime \prime}$ long). Satisfaction guaranteed.
See Your Dist. or Order Direct
PRES-PROBE CO. 4034 N. Sixth St., Milwaukee 12. Wisc.
triode oscillator for u.h.f. television receivers. The 6 T 4 can deliver 160 mw at 950 mc with 100 volts on the plate and 4 volts of bias across a $10,000-\mathrm{ohm}$ grid leak. Plate current under these conditions is 22 ma, and grid current 0.4 ma . The 6 T4 has a 6.3 -volt, 0.225 -amp heater. Basing is given in the accompanying diagram.

Relief from u.h.f.-converter interference may be in sight with the introduction of the 6AJ4 u.h.f. amplifier triode. The 6AJ4, announced by General Electric, Raytheon, and other manufacturers, is a 9 -pin miniature grounded-grid amplifier with a power gain of 7 db and a noise figure of 15 db at 900 mc .

G-E 6AJ4 grounded-grid u.h.f. triode.
Recommended operating conditions and characteristics in u.h.f.-amplifier service: Plate voltage, 125; plate current, 16 ma; cathode resistor, 68 ohms; gm, $10,000 \mu \mathrm{mhos} ; \mu, 42$; plate resistance, 4,200 ohms (approx.) ; bandwidth, 10 mc. In u.h.f. service all five grid pins (see basing diagram) should be grounded to reduce lead inductance.

The Sylvania 6V3 is a new 9 -pin miniature damper tube that has been incorporated in several late 1952 and 1953 TV receivers. The 6V3 has exceptionally high heater-cathode insulation (6,750 volts peak) made possible by bringing the cathode connection to a top cap, to handle the large-amplitude

Sylvania 6 V 3 miniature damper diode.
flyback pulses in modern high-efficiency horizontal sweep circuits. Heater rating is 6.3 volts at 1.75 amp , and the 6 V 3 can supply a boosted B plus load of 135 ma . See the accompanying diagram for base connections.

Sylvania has introduced a new hori-zontal-deflection stabilizer tube-the 40B2-with different current and voltage ratings than the earlier 40 Al . These tubes contain a special nonlinear resistance element which can be used
 LOW IN CCST - HIGH IN PERFORMANCE

NEW TRIO UHF BOW-IE with reflector Sturdy, aroadband antennas of uniformly high gain that have been tharoughly field tested. Phasing strips installed. are-assembled a iifly atach seflector screen. Available in one, two and lour bay models. Usual high-quality TRIO construction.

Model UBT-4
Supplied with
4 Foot Mes:
(V Antonnes exist for on neoson - iọ provide a clears itrong, sharp picture!
TRIO ZIG-ZAG*TV Anienaes porform so well in this all important respeci shat they ore Americo's most wanted.

Yes, a picture - the TV picture - tells the TRIO story more eloquently than anything elsel Where all other antenno designs fail, high goin TRIO ZIG-ZAG IV Antennas consistently lock in sharp, dear pictures from Maine to Texas, in city or countryl
TRIO TV antennas look different, work different provide a magniticent DIFFERENCE in picture qualityl -Patent Pandina

- NHe ingolating alerve, with long-- loakag aath and elimination I Nit, soe gway mith acuombly over, Fer mesilevtl cammet, buent ofopl, flerlis.olated lefont

Model UBT-2 Suppied With . 3 Fcot Mast

MEW TRIO UHF MUSTI-CHANMEL YAGI AMTEMAAS

Alsoin the Flature

The TRIO \& kiator and Difection indicator the mosi dopend able ame buill, Devalopend ather $\$ 50,000$ memarch. Fully gugram. thed for FULL twe yeors?

82

Ask your distributor for Stancor bulletins 461 and 465 , listing replacement applica. tions of thęse trans. formers-or write directly to Stancor for your free copy.

4

A.8132-Replaces Muntz \#TO.0031; used in 1951 and 1952 production. Covers approximately 300,000 Muntz sets.

A-8136-Replaces Philhar. monic \#80-263, \#80. $265-2$ and \#80-265. Used in oll sets built since early 1951 including AMC, Pathe, Silvertone, and othe, "prinate label" sets.

Stancor Transformers are listed in Howard W. Sams' Photofact Folders, John W. Rider's Tek-Files, and the
Howard Company's Counferfacts.

STANDARD TRANSFORMER CORPORATION

3592 elston avenue - Chicago 18, illinois EXPORT SALES -
Roburn Agensies, Inc., 39 Worren St., Now York 7, N.Y.

OVER 50,000 TECHNICIANS have learned

HOW TO GET THE MOST OUT OF BASC TEST EQUPMENT

for A.M. - F.M. -TV

NEW DESIGN

as the cathode resistor of the horizontal output tube. The nonlinear resistance characteristic holds the total cathode current constant over a wide range of line-voltage variations. This stabilizes the horizontal sweep and high-voltage outputs, and makes it possible to get full picture width and brightness at low line voltage without exceeding the maximum ratings of the output tube when the line voltage is normal or high. The 40 B 2 is designed to maintain an average current of 150 ma at a 40 -volt drop. Both types have a 5 -pin octal

Sylvania 40B2 sweep-regulator tube.
base, with the resistance element connected to pins 2 and 7.

Special-purpose fubes

Du Mont announces two new 10 -stage photomultiplier tubes of special value in nuclear-physics work. The 6291 and 6292 have identical straight-line dynode structures which give maximum physical separation between photocathode and anode, and differ only in diameter.

The new photomultipliers are designed to have higher stability over long periods than previous types, through the use of silver-magnesium for the dynode elements and improvements in the internal structure. The photocathode has an average sensitivity

of 60 uamp per lumen, with maximum response in the visible portion of the light spectrum.

While their small size (the 6291 is only $11 / 2$ inches and the 6292 is 2 inches in diameter) makes them specially suitable for portable scintillation counters, the new tubes have numerous other applications in astronomy, biology, and industrial electronic equipment. Where maximum gain is the prime requirement the tubes can be operated at dynode potentials as high as 190 volts per stage.

The CBS-Hytron 6216 is a new 9 -pin miniature beam-power amplifier developed primarily as a filter-reactor tube for airborne and mobile equipment. In the circuit shown it provides the same filtering as a 12 -henry, $100-\mathrm{ma}$, ironcore choke with a d.c. resistance of 350

Circuit for 6126 filter-reactor tube.
ohms, at a tremendous saving in weight and space. These characteristics may also make it popular in TV receiver circuits which use the audio output tube as a combined dropping resistor and isolating filter between the full B supply voltage and the 135 -volt line to the i.f.'s and other stages.

The 6216 has a 6.3 -volt, $1.2-\mathrm{amp}$ heater, with maximum heater-cathode rating of 150 volts. The output ripple in the filter-reactor circuit shown is approximately 210 mv .

The 6216 can also be used as an audio amplifier, class-C oscillator-amplifier, or frequency multiplier. Basing is shown in the diagram.

I corit know the number either. Keep going. Itit onthis street!

NOWb
 IEST, SERVICE 12 or 6 volt aUTO RADIOS

Only 3\% Ripple at Full Load

Completely variable output makes it possible to test equipment under any voltage input condition. Provides filtered adjustable DC voltage for testing and servicing 12 volt and 6 volt auto radios from AC lines...no special connecting line needed. Operates electronic equipment used on trucks, tanks and other mobile units and low voltage devices. Utilizes Superior Powerstat Voltage Control (Model 10) for extremely fine voltage adjustments.

Another Better-Than-Rated EPL Product!

Write for Free Bulletin

ELECTRO PRODUCTS LABORATORIES

4501-Rc North Ravenswood Ave. Chicago 40, Ill. CANADA: ATLAS RADIO CORP., LID., Toronto, Ont.

No matter what the specific requirement of an installation is - a Taco Bow Tie will fill it..
Taco's Bow Tie is the proved fop performer. Now you can carry a single antenna with assurance that it will fill all your UHF needs with the easy adaptation of screen-type reflectors.
Fill all your needs with the best UHF antenna-The Taco Bow Tie.

THE BASIC UHF ANTENNA

Technical Appliance Corporation Sherburne, N. Y.
In Canada: Hackbusch Electronics, Lid. Toronto 4, Ont.

Get the complete story on the Taco UHF Team from your Tace distributor.

Linearity adjustments in the palm of your hand

with the GREST TV BAR GENERATOR

Provides actual bar patrern
 on TV receiver screen

A highly efficient, portable, lightweight unit provides servicemen with the sensibly engineered Television Bar Generator. On the spot accurate linearity adjustments.

- Can be used when no stations are on the air.
- Producas horizontal or vertical bars.
- Adjustable number of vertical and horizontal bars.
- Simple self-powered plug-in unit . . . fits picture fube
...no tools required for this 10 -second installation.
Model MA-4
$\$ 10^{95}$
- Vest pocket size . . . stow conveniently in tool box.

LIST PRICE

$\$ 17^{95}$
LIST PRICE

When ACCURATE voltage boost is required CREST LVB. 117

The LVB 117 is engineered to safely and accurately restore required voltage to any IV set or electrical appliance. Insures full strength and proper width and height of TV picture when low line voltage weakens and shrinks picfure. Corrects low line voltage sync and oscillator drift troubles.
6 unique features for the ultimate in accurate voltage boost!

- 350 -Watt Rating... ample for most requirements on line voltages from 90 to 135 volts.
\checkmark Simple External Plug-in... 10-second installation.
- Automatically Operated ... Purns on and off with set or appliance.
Wulti-Tap Selector Switch . . . permits exact voltage boost.
\checkmark Overload Fuse Protection ... protects against unsafe line voltage increase.

Now available in the CREST LVB "Jr." Single Switch Control... for 10 volt boost or straight-thru line. 350 watts rating.
Inadequate picture width Insufficient height Weak pitture brightness Poor sync and oscillator drift

LIST PRICE
Catalog
No. $302!$
$\$ 975$

See us at the Electronics Parts Show, Chicago, Booth 120
LABORATORIES INC.
84-11 Rockaway Beach Blvd., Rockaway Beach, N. Y.

ANNOUNCING THE NEW

VOLTAGE DOUBLER
PROBE (BZ-4)

NO PROBE MARKETED IN THIS PRICE FIELD OFFERS A RANGE ANYWHERE NEAR THE RANGE OF THE BZ-4
\$10.75
Check with your local distributor or write about the BZ-4 and the other Scala probes:

BZ-1 Signal Tracing Probe, 59.75
BZ-2 Low Capacity Probe, $\$ 9.75$
BZ-3 100:1 Voltage Divider Probe, $\$ 9.75$
SCALA RADIO CO. 2814 19th St.i San Francisco 10, California

NEW YORK SEES FILMS

Members of the Associated RadioTalevision Servicemen of New York (Citv) heard preliminary plans for an extended educational program for the citv, state, and possibly national organiration at a well attended meeting Thursday, April 16.

During the meeting Zenith representatives showed two films, "Fog Over' Portland", summary of the difficulties which accompanied the commencement of commercial u.h.f. TV broadcasting in the United States, and "Phonevision", a descriptive piece showing how Zenith's proposed subscription TV system would work.

EASTERN GROUPS MEET

A two-day conference of TV service group representatives was held April 11 and 12 at Paterson, N. J. The confer.ence was organized by a joint meeting (at Trenton, March 8) of representatives of the National Electronics and Service Dealers Associations (NETSDA), the Federation of Radio Servicemen's Associations of Pennsylvania (FRSAP) and the Radio Associations of New Jersey (RANJ).

The conference was attended by more than 30 delegates and visitors, and discussed such problems as flatrate racketeering competition, retail sales by jobbers, the service contract, licensing for control or revenue, and other points of importance to the service dealer. Papers on business insurance, credit bureaus and u.h.f. were heard by the assembled service dealers.

The April 12 meeting passed resolutions urging the establishment of local associations; interchange of information through such associations; and establishing a plan for a sustained public relations program, to be drafted by the conference secretary. The broadcasting industry was thanked for the favorable notice taken of the television service industry by broadcasters, and an expression of appreciation was drafted to the New Jersey group and the Tennessee delegates for their actions in laying the groundwork for association federation in their states.

LICENSE BILL IN PA.

A new proposal to license radio and TV technicians has been introduced in the State Legislature by Representative Vincent F. Guttendorf of Luzerne.

Two bills were introduced. Under the terms of HB 838, a state board of examiners of radio and TV service technicians would be set up and their duties defined. A companion bill, HB 839 would regulate TV and radio service.

According to Dave Krantz, chairman of the Federation of Radio Servicemen's Associations of Pennsylvania, the new bill is an improvement on one presented to the Legislature last year but not acted on, in that it provides for more participation by the service technicians and more representation by them on boards established by the acts. The State Federation is supporting the bills, Mr. Krantz stated.

ICele S aumed CUSTOM-BUILT Direct from MANUFACTURER to YOU!

WHY PAY MORE? COMPARE! Don't be misled by other offerings of cabinets somewhat similar to these original TELESOUND creations in outside appearance-but NOT in quality! TeleSound Cabinets are massively constructed, fully reinforced, smartly styled in the modern manner, polished to a high gloss piano finish, very rich and substantial in appearance. Compare price AND quality-then buy with confidence from TeleSound. Our Factory-to-You shipments, at lowest wholesale prices, are your guarantee of satisfaction!

$\begin{array}{ll}\text { MODEL } 500 \mathrm{H}: 25^{\prime \prime}, & \mathrm{D}: 211 / 2^{\prime \prime} \\ \text { W: } 25^{\prime \prime} .50 \mathrm{lbs} . \\ \$ 400\end{array}$ As above but for $24^{\prime \prime}$ \& $27^{\prime \prime}$ CRT. Have removable front frames and recessed chassis panels.
24" Model H:31"

D:24", W:31

All TeleSound Cabinets illustrated are available in Ribbon Stripe Mahogany. Model 200 also available in Walnut. All cabinets can be had in Blonde Korina at 10% additional. These cabinets are custom built and drilled to fit standard 630 type TV chassis. We can supply them with undrilled panel to fit any other chassi you specify. NEW COMPLETE ILLUS
TRATED TELESOUND CAB
INET CATALOG JUST OUT!

SEND TODAY FOR YOUR FREE COPY!

High sensitivity, for excellent performance in both fringe and strong signal areas. Com OUR LOW PRICE

telesound "Package deal"

Save a bundle of dollars! Order the TeleSound Cabinet of your choice in combination with either Video or Regal TV chassis listed obove, 12" PM Speaker, and your choice of Picture Tube, of the MONEY-SAVING prices shown below.

FAMOUS SUPER-POWERED VIDEO 530DX TV CHASSIS

* AUTHENTICALLY STYLED Pagoda Creden-
za with a pair of removza with a pair of remov-
able matching side cabinets suitable for built in nets suitable for built in
bar, record player, rabar, record player, ra-
dio, etc. A complete home entertainment cenhome entertainment cen-
ter. This authentic piece is the ultimate in superior craftsmanship-a luxurious centerpiece that is sure to be the center of attraction in your home! Center Piece:
$H: 36^{\prime \prime} \quad W: 42^{\prime \prime} \quad D: 24$

H:36" W:42", D:24
H:36" W:18", D:22"
wodel 1300 Pagoda Style Model 1300 C Centerpiece only Model 1300L Left End Piece $\$ 118.55$ Model 1300R Right End Piece $\$ 118.75$ Model 1350 Same as above except with straight top in place of the pagoda style top illustrated above.

ACCLAIMED by television TECHNICIANS!

MODEL $1050 \mathrm{H}: 40^{\prime \prime}, \mathrm{W}: 321 / 2^{\prime \prime}$. $\begin{array}{llll}\text { D: } 231 / 2^{\prime \prime}, & 100 & \mathrm{lbs} . & S \leftrightarrow 00 \\ \text { Adaptable } & \text { for } & 27^{\prime \prime}\end{array}$ Picture Tube.

421 West 28th Street New York 1, N. Y. Phone: WI 7-0719

NeVI
 Three-Speed Phonomotors by General Industries

MODEL SS (2-pole motor)

Very compact 3 -speed phonomotor incorporating vertical idler shifting principle. Idler wheel drives the turntable directly from appropriate step on motor shaft. Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft during non-operating periods.
Features include ribbed mounting plate, oilless bearing and dynamically-balanced rotor. Turntable shaft revolves with turntable and is grooved for turntable clip. Furnished with $8^{\prime \prime}$ turntable. Dimension: Length: $5^{\prime \prime}$; Width: $4^{23 / 32^{\prime \prime}}$; Depth: $2^{15 / 32^{\prime \prime}}$ below mounting plate.

MODEL DSS (4-pole motor)

For applications in which compactness is secondary to need for absolute minimum of stray field radiation. Ideally suited for magnetic pickups.
Speed change is accomplished by vertical movement of idler wheel to appropriate diameter of motor shaft for desired turntable speed. Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft, and cuts off the current to the motor.
Features include precision construction throughout, oilless motor and turntable bearings, dynamically-balanced rotor. Furnished with $10^{\prime \prime}$ turntable.

EASY TO LEARN CODE
It is easy to learn or tncrease soeed
with an Instructograph Code Teacher. affords the gulckest and Affords the quictest and most prac-
tical method yet developed. For beMraners or adranced students. Avallable tapes for beglnner's slphabet
to typlcal messages on all subjects. to typleal messages on all subjects.
Speed range 5 to 40 WPM. Always Speed range 5 to
ready-no QRM.
ENDORSED BY THOUSANDS!
The Instructograph Code Teacher ator-instructor and enables anyone ar earn and master code without fur-
ther מssistane. Thousands of successui operators have "acquired the code" With the Instructograph System.
Write today for convenient rental and purchase plans.

4701 Sheridan Rd., Dept. RC, Chicago 40. Itl.

AGAINST LICENSING

The Northeast Television Service Dealers Association of Philadelphia has reiected the pending state bill to license TV technicians. Mr. Albert Haas, spokesman for the group, stated that the bill, HB 839, had been read at a meeting, and that the members felt there were too many loopholes in the wording.

U.H.F. PROBLEM

The manner in which the local u.h.f. situation was being used ミor advertising purposes was the subject of the March meeting of the Radio and Television Association of Springfield and Vicinity (Ohio).
A letter pointing out the difficulties of the dealer and technician faced with the problem of selling sets in spite of alarmist statements about color and misleading claims on indoor antennas was sent to local distributors, newspapers, broadcast stations, and chambers of commerce. It summarized the situation existing at the time (March) and offered the following suggestions to local advertisers and publishers or broadcasters of advertising copy:

1. Keep to the facts!
2. U.h.f. is not here (in SpringfieldEditor) today.
3. Stop l-eeping the public in suspense by saying it's "gonna" be on anytime now; give us a specific date instead.
4. Think of your numerous fringe viewers. Remind them that built-in antennas are for metropolitan use only, and usually not effective 25 miles from the station.
5. When advertising u.h.f. sets, antennas, attachments etc., state calculated coverage also.
6. Refrain from advertising "troublefree TV", but instead inform the viewer that maintenance (don't call it repair) will be necessary on a TV set and amounts to a yearly average of about $\$ 40.00$ (estimated).
7. For such maintenance, refer the viewer to a franchised dealer. Warn him to stay away from wildcat outfits which have neither the capital nor the equipment to do a serious job, and usually get their victims by advertising night and Sunday service, often at ridiculously low fees.

ESFETA ELECTS

The annual meeting of the Empire State Federation of Electronic Technicians took place at Binghamton, N. Y., April 19.

The new slate of officers is: Max Leibowitz, ARTSNY, New York City, president; Jack Wheaton, Long Island Radio Technicians Guild, vice-president; Chas. Kohl, UETA, Kingston, treasurer; Wayne Shaw, RSA, Binghamton, secretary; and Andrew Wentworth, RTG, Rochester, sergeant-atarms.

Organizational and other problems were discussed, and arrangements made for a technical lecture program, to include material on transistors, u.h.f. and color TV.

ALMO RADIOCO. 509 ARCH ST. \& 6205 market st Philadelphia, Pa.
 6th. \& ORANGE STS. - Wilmington, Del. 4401 VENTNOR AVE. - Atlantic City, N. J. 1133 HADDON AVE. Camden, N. J. 219 Highland Ave, © Salisbury, Md.

TV HICH VOLTAGE DETECTO PROBE

SAFE!! QUICK!!

 TO INDICATE PRESENGE OR AB SENCE OF HIGH VOLTAGE: Place Lamp end of DEFTECTO IPROHE nethe plate lead (top-can) of rectitier tube. Fallure of Lamp to light TO CHECK IF HIGH VOLT. AGE SUPPLY IS OPERAT-
JNG PROPERLY: Toueh
if end of DETECTO
PIOBE to phate connection (1on-cap) of
rectitier tube rectincer tine. If
Higli Voltage supply is operating properly.
spar SDar
least
lat long will
he rebe re-
sult.

NEW CHICAGO GROUP
More than 100 service firms meeting in Chicago March 19 agreed to contribute 1% of their wholesale parts purchases toward a Greater Chicago consumer education campaign. Each of the firms also agreed to set aside $\$ 10$ as an annual membership fee in a new organization, which was not given a name at the meeting.

A rough draft of the campaign, worked out by a Chicago advertising agency, was presented to the meeting. Details of the campaign, it was stated, would not be worked out till it becomes clear how much money would be available for the work. No actual cost figures were presented, but it was understood that the temporary officers of the group were thinking in terms of an annual cost of $\$ 200,000$ to $\$ 250,000$ for the campaign.

NATESA CONVENTION

The Natesa Convention and Exhibition at Kansas City, April 10-12, was attended by just under 500 people, who registered from 35 states and more than 60 cities.

Thirty exhibitors had large display booths of various types of equipment and working exhibits. There were addresses by John Thompson of G-E, Frank Mansfield of Sylvania, Lloyd Austin of Simpson Electric, Harold Rieth of Regency, Robert Artman of Empire Coil, Larry Kearney of LaPointe Electronics, Chet Jur of Merit, Al Saunders of Saunders Radio and Electronic School (Boston), and Louis Calamaras of NEDA.
A very comprehensive business meeting was held, at which the subject of consumer relations was explored fully. A plan was established to obtain the cooperation of public utilities in the consumer relations program. The services of the FTC are to be enlisted to establish definitions and practices for the service trades. The theme of the convention was "Reciprocal Cooperation"

Arrangements are in progress for the September convention to be held in the city of Chicago.

EMERGENCY CALLS

According to Penny Martin, of the Television Service Association, Pittsburgh, Pa., the new Pittsburgh telephone directories will list the following emergency calls
FIRE
POLICE
DOCTOR
TV REPAIRMAN

NEW JERSEY COUNCIL

TV service organizations met on the evening of Saturday, April 11, to form the New Jersey Council of Television Service Associations, as the nucleus for a state-wide group to assist local associations in public relations, education and legislation. A steering committee composed of Harold B. (Dusty) Rhodes, Paterson, Roger K. Haines, Haddonfield, and David Van Nest, Trenton, was appointed to get the new state council under way. The N. J. groups were attending the Paterson conference.

END

25th year of leadership
in the design and manufac
ture of quality microphones. Pioneers of the attractive "full-vision" design
of quality microphones to be heard but not seen. Enjoy perfect
performance ... plus... full vision for beth artist and audience.

BUILD 15 RADIOS ONLY AT HOME S1995
 With the New Improved 1953

Progressive Radio "EDU-KIT"

NOW INCLUDES
 SIGNAL TRACER and CODE OSCILLATOR

- FREE TOOLS WITH KIT
- ABSOLUTELY HO KNOWL.

EDGE OF RADIO NECESSARY

- NO ADDITIONAL PARTS NEEDED

- EXGELLENT BACKGROUND FOR TELEVISION
- 10 day money-back guarantee

WHAT THE PROGRESSIVE RADIO "EDU-KIT" OFFERS YOU

The Progressive Radio "Edu-kit" offers you a home study course at a rock
bottom price. Our Kit is des igned to train Radio Technicians. With the basic facto
of Radio Theory and Construction Practice expressed simply and cleariy. You will gain a knowledge of basic Radio principles involved in Radio Reception, Radio Transmission and Audio Amplification,
You wil learn how it identify Radio Symbols and Diagrams; how to build
radios, using regular radio circuit schematics: how to mount various radio parts; how to wire and solder in a professional manner. You will learn how to operate trouble-shoot radios. You will learn code. You will receive training for F.c.c. In brief, you will receive a basic education in Radio exactiy like the kind y
would expect to receive in a Radio course cosking several hundreds of dollars.

THE KIT FOR EVERYONE

The Progress to learn Padio. The Kit has been used succestully by person Who has in all parts of the worid. Tt is not necessary that you have even the
and old
sitighest background in teien slightest background in science or radio, used by many Radio Schools and Clubs
in this coungressive Radio "Edu-Kit, is
 are includer. All parts are individually boxedd, and identified by name, photograph
and diagram. EEvery step involved in building these sets is carefully explained.
You cannot make a mistake.

PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu-kit" comes complete with instructions. These
instructions are arranged in a clear, simple and progressive manner. The theory
of RRatio Transmission, Radio Recetion, Audio Amplification and servicing ty
Signal Tracing is clearlyexplained. Every part is identified by photograpn and Signal Tracing is clearly explained. Every part is identified by photograpn and
diagram. You will learn the function and theory of every part used. The Progressive Radio "Edu-kit", uses the principle of "Learn by Doing": These radios are designed in a modern manner, according to the best principles
of present-day educational practice. You begin by building a simple radio. The of present-day educational practice. You begin by building a simple radio. The
next set that you build is sighty more advanced. Gradually, in a progressive manner, you will find yourself constructing still more advanced radio sets and
doing work like a professional Radio Technician Altogether you will build fifteen
radios, including Feceivers. Transmiters. Amplifiera. Code Oscillator and Signal
The Progressive Radio "EDU-KIT" Is Complete rou will receive every part necessary to build 15 different radio sets. our
kits contain tubes fube sockets, chassis, varialle condenserst electrolytic con-
densers, mica condensers, paper condensers, resistors, ine cords, selenium rectidensers, mica condensers, paper condensers, resistors, tine cords, selenium recti-
fiers, tie strips, coils, hardware, tubin, hook-up wir, solder, etc.
Every part that you need is included. These parts are individually packaged, so that you can easily identify every item. Toop are included, as wert as an
Electrical and Radio Tester. Complete. easy-to-follow ingtructions are provided.

TROUBLE-SHOOTING LESSONS
Trouble-shooting and servicing are included You will be taught to recognize
and reparr troules. You will build and fearn to operate a professional signal
 repairs. While you are learning in this practical way, you will be able to do
many a repair iob for your neghbors and fricnds, and charge fees which will
tar exceed the cost of the "Edu-Kit" Here is your opportunty to learn radio tar excee the cost of the '"Edu-Kit', Here is your opportunity to learn radio
quickly and easily and have others'pay for it. our consultation service will
help you with any technical problems which you may have.

FREE EXTRAS IN 1953

- electrical and radio tester
- ELECTRIC SOLDERING IRON
- bOOK ON TELEVISION
- RADIO TROUBLE-SHOOTING GUIDE
- membership in radio-television club
- consultation service
- QUizzES
- training for f.c.C. LICENSE

The Progressive Radio "Edu-Kit" is sold with a 10 -day money-back guarantee. Order your Progressive Radio "EDU-KIT" Today, or send for further information.

See the AUGUST issue of

SCIENCE-FICTION +

-a new adventure in reading

THE END OF
THE MOON
Gustav Albrecht, eminent physicist, tells what will happen when our moon breaks up. Dramatically illustrated with Frank R. Paul,

THE SPACEBRED GENERATIONS

An absorbing novelette by Clifford D. Simak, one of the best of today's science fiction writers.

PLUS-many other stories and articles
This new Gernsback Magazine ON SALE JUNE 10

Reserve a copy at your favorite newsstand now.
Don't say science fiction-say SCIENCE-FICTION PLUS

NEW AUDIO COMPONENTS

Sorgent-Rayment Co., ${ }^{1401}$ Middle Harbor Rd., Oakland, Calif., has added four new items to its "build-ing-block" series of high-fidelity au dio components. The new units are the SR-68 AM-FM funer, the SR-58 AM tuner, SR-38 phono preamolifier and

tone control, and the SR-9 Uitro Linear Williamsan-type power amplifier. Full specifications on these and previousty announced components in the line can be obtained from the manufacturer.

NEW ELECTROVOICE TWEETER

Electro-Voice, Inc., Buchanan, Mich. has developed the new T-35 high frequency driver unit and diffraction horn. The tweeter may be used with sound systems handling up to 40 watts. The voice-coil impedance is 16 ohms potentiometer diameter is $21 / 2$ inches

pounds. The horn cutof is at 1,500 cycles. The driver takes over from 3,500 cycles to the limits of audibility. The AT-37 level control and X-36-1 crossover network may be used to connect the T. 35 to existing high-fidelity sys tems.

SPEAKER CROSSOVER

Hermon Hosmer Scott, Inc., 385 Put nam Ave., Cambridge 39, Mass., offering a variable speaker crossover. With the 214-XB, speaker woofers and tweeters can operate under the best
canditions of speaker damping relacanditions of speaker damping, relative output balance, and without in. terposition of L.C crossover networks. Speakers may be connected directly to the amplifiers, with optimum damp ing. Resistive.capacitive, the unit elim inates all effects of resonant under amping

There are two cortrols. One provides continuous adjustment of crossover fre quency from 175 to 3,000 cycles, and the other allows continuous adiust ment of acoustical balance berween different speaker efficiencies.

TV ATTENUATOR

Vidaire Electronics. Mfg. Co., Lynbrook, N. Y., has introduced a tele vision attenuator that eliminates over loading due to strong signals. The Tel-Atten was desigined to reduce buzz
modulation effects. It also features

1,000-to-1 change in signal reaching antenna posts, and vernier adjustment for all signal areas.
Model A-2 measures $3-5 / 8 \times 2.3 / 8 \times$ $1-1 / 4$ inches and is suitable for mount ing on the set itself ar on a nearby

UHF DEVICES

Channel Master Corp., Ellenville, N. Y., has announced three products for u.h.f.ita-Weld Yagi, a O-element u.h.f. antenna, provides up to 11 db gain single and 14 db gain stacked.

The Ultra-Tie, model 9034, combines separate antennas into a single u.h.f. v.h.f. system. It ioins them together at the mast for use with a single transmission line and separates the signals at the set or converter ter the Econo-dapter. is ansa adap

ne! u.h.f. triangular dipole for adding u.h.t. to v.h.f. Super fan installations. it is designed for use with separate v.h.f. and u.h.f. leads to the TV set or UHF ANTENNA The Hi-Lo TV Antenna Corp., 3540 N .
Ravenswood Ave., Chicago 13 Ravenswood Ave., Chicago 13 Ill.
has announced the indoor u.th.f. Spihas announcea the indoor u.t.f. Soi-ral-Tenna, model 202 U.V. It ran be used tor asl chonnels (u.h.f. and w.h.f.)
with Hi-Lo's u.h.f. antenna adapter. The unit measures 20×32 inches.

Compane

model 600

EMC MODE: $\$ 00$ SCOPE features the use of a 5 JP 1 new 5 inch scope tube. The 2-sloge, push pull, verticaleamplifier hes a sensitivity of .02 valis per inch and can be used ip to 5 megacycles. A iwo step attenuator inpul is available. Synithronization is avoifable on either positive or negative phase of input valtage through the rertical amplifier or from on exteraal source. A multivibrator fype of sweep from 15 cycles to 75 हilocycles is incorporated. Dinext cannections to scope plate available.

MODEL $\triangle 00$ (completely wired and tested).
$\$ 99.50$

now packaged preassembled
The Amphenol 300 ohm BO-TY Antenna, $114-065$, is a UHF antenna and reflector that intercepts any of the UHF channels, 14 through 83 . High signal gains of 5 db to 8 db plus excellent front-toback ratio make the BO-TY Antenna ideal for both strong and weak signal areas. For extremely weak signal areas, two BO-TYs can be easily stacked. One stacking rod is provided with each 114-065 BO-TY making the necessary pair when two are bought for stacking.

All components of the Amphenol 114-065 BO-TY Antenna are completely preassembled for quick and easy mounting on the mast. Installation is a simple matter of tightening two wing nuts.

OTHER UHF TYPES AVAILABLE SOON. De signed and field tested by the same engineers who developed the famous INLINE VHF Antennas, the UHF Antennas previewed here will shortly be added to the AMPHENOL line. YAGI UHF Antenna for high gain on specific channels. STACKED-V combination UHF and VHF Antenna, CORNER REFLECTOR all-channel, high gain UHF Antenna. RHOMBIC Antenna for high gain, broadband UHF reception. AMPHENOL tubure enemies of UHF oisture one of the greatest erially affect the Moisture, one does not matency of AmpHENOL signal stren or electrical efillustrated, the consimpedance or elect. As illustrargely contained BeTubular Twin- of energy is construction. this Tubutrated field by the tubular not afford and protected by thelesd does not for cause flat it is not protections.

NEW DEVICES

PORTABLE RECORDER

Amplifier Corp. of America, 398 Broad way, New York i3, N. Y. has announced a portable tope recorder the $110-v o l$ a portable tape recorder, the 19 pounds and atrains a frequency esponse of 50 to 15000 cycles at 71 i.p.s. (inches per second).

It is completely operated by push button control. and features a solenoid operated clutch-controlled capstan arive to start and stop tape travel
within $1 / 20$ th of a second. The unit incorporates relay-operated modified Geneva movement to control high speed rewind and 60 i.p.5. fast-forward Movements. The Mognematic uses 5 inch plastic or metal reels of standard headphone monitoring and optional erase.

INDOOR UHF ANTENNA
Radion Corp., 1130 W. Wisconsin Ave. Chicago. Ill, is producing an indoo u.h.f. antenna, the Bullseye. It is a ull-wave oop, engineered for broad band coverage, low standing wave atio and low

The antenna is 10 inches high and 9 inches wide and weighs under pound. The loop is of rose-gold colored anodized aluminum with a mahogan phenolic base weighted to prevent bled, with lead-in and instructions.

U.H.F. PRODUCTS

RMS (Radio Merchandise Sales, Inc.) 2016 Bronxdale Ave. New York 60 tenna, a Yagi series, and a lightning tenna, a Yagi ser
arrester bow tie element and reflector section of the BO-Tenna model BT- 10 section of the fo-fenna model are standard fitted units each of which is available separately. The re. flector is made up of tuned elements instead of wire mesh, to minimize ghost pickup. Stacked models are designated BT-20.
use a 3 -wire folded dipole transformer

\& so

The elements are of $3 / 16$-inch aluminum rod, force-fitted to the crossarm. There are 6 models in this $6 Y$ series stacked models are also avalable. The model LA-UH3 lightning arres fer has specially designed filter net works to isolate r.f. from ground potential. It accommodates all types of commonly used transmission lines and

SUBSTITUTION KIT

Crest Laboratories, Inc., 84-11 Rocka way Beach Blvd., Rockaway Beach, N. Y., has introduced a variableinductance, universal substitution kit consists of eight variable-induc ance coils, covering a range from and i.f. circuitry. Full data sheets are

enclosed. Individual calibration charts permit adjustment to required induc

OSCILLOSCOPE PROBES

Precision Apparatus Co., Inc., Elmhurst N. Y., is producing an oscilloscope test probe set, the series SP-5, which includes four probes for general purpose as well as specialized TV sig nal-tracing, alignment, trouble-shoot ing and waveform anolysis. The four probes are (1) high impedance - low capacitance; (2) signal-tracing: (3) esistive-isolating; and (4) shieldeddirect

UHF CONVERTER

Electro-Voice, Inc., Buchanan, Mich. has announced the model 33oter-type converter. Nonslio tuning of all u.h.f. channels 14-83. No band 5 witches, strips, or coils are used.

The unit operates with either sepa rate u.h.f. and v.h.f. antennas or on all channel (2-83) antennas. It uses channels 5 or 6 of v.h.f. TV as i.f. The model 3300 operates from rond, sut cyeles ances 300 ohms

VOLTAGE BOOSTER

The Service Instruments Co., 422 S . Dearborn St., Chicago 5, 111., has announced the Up-Down voltage booster. RADIO-ELECTRONICS
tage and is usable with any TV set or oppliance un to 300 watts. It elim inates inadequate picture width. in sufficient height, and low picture subtracts 10 volts from existing line voltage.

V.H.F.-U.H.F. ANTENNAS

Kay-Townes Antenna Co., Rome, Ga. has announced its new BJU antenna series. They are assembled in kits of 2 to 83. They provide high gain.

Only one lead-in wire is required No isolation filters, matching pads, coils, capacitors, or other boosters are used.

TV CLARIFIER

Precision Electronics. 9101 King Ave. Franklin Park, III. has announced a new model of its Television Clarifier It is designed to trap interference from FM, amateurs, short=wave dia

nels, without disturbing the standing wave ratio of the antenna system When installed, the receiver is funed to the channel where interference is received, and the trimmers on the clarifier are adusted one at a time until the interfering signal is removed.

VINYL ADHESIVE

Chemical Development Corp., Danvers, Moss has introduced CD Cement No, 203, for bonding vinyl film and moided articles or rigid sheets to metal, glass acrylics, ceramics, paper, cloth, cork, and many other surfaces it produces o quick initial bond and is very fast setting. It consists of vinyl resins, plasticizers, tackifiers, stabiizers, and other ingredients. May be applied by brush or machine.

ALL-CHANNEL ANTENNA

Payo Engineering Labs, 2834 Hamp shire St., Quincy, III., has announced an oll-channel antenna. Typical gain figures for u.h.f. are: chonnel 82, 12.5 db chonnel $52,11.0 \mathrm{db}$; channel 18 11.6 db : channel $13,4.3 \mathrm{db}$. The anminor lobes, and wind resistant.

NEW VOLTMETER

American Research Corp., 1504 IIth St. Santa Monica. Calif. has developed a portable voltmeter which measures from 4,000 to 25,000 volts.
The Voltprobe is 10 inches long and needs no outside current to operate. To function, an alligator clip is connected to the chassis of the TV set. The probe end of the unit is connected to the second anode by piercing through the rubber protective cap. Measurements can be made without removing the tube or chassis from the cabinet.

TINY TRANSFORMER

Standard Transformer Corp., 3580 El ston Ave.. Chicago, Ill., has introduced an ultra-miniature transistor transformer
Weighing less than $1 / 10$ ounce, the units measure $1 / 4 \times 3 / 8 \times 3 / 8$ inches and are no larger than the transistors they ore designed to power. Intended primarily for transistor audio applications, the ultra-miniature transformers can be used wherever power is low. They are useful belaw the $1 . \mathrm{mw}$ leve.. Construction is of extremely fine wire wound on molded nylon bobbins with nickel-alloy steel laminations.

RECTIFIER KIT

Federal Telephone and Radio Corp. Clifton, N.J., has designed a selenium rectifier kit with the necessary components for assembling any one of four full-wove center-tap rectifier, full-wave

AMPHENOL

-HHINEVHF

 television antennasINLINE $114-302$
STACKEB

proven 10 ways better . .

1 Wide, single forward lobe.

2 High front-to-back and front-to-side ratios.
3 No lobes off the sides-negligible ones off the back.

4 Uniformity of lobes at all frequencies.

5 High, uniform gain.
6300 ohm impedance.

7 All-aluminum antenna construction.

8 3/4" Thinwall galvanized steel conduit mast.
9 Quick-Up assembly takes three minutes to erect.

10 Conveniently packaged with everything needed for the installation-antenna, mast, insulators, guy ring, mounting bracket and Twin-Lead (two bays and connecting rods included with stacked arrays).
*Reissue Pof. No. 23,273

Tin is all you have to sell!

Save time hunting for the "bugs" with Videa Speed Servicing Val. I data sheets. This sensational new servicing aid tells you what actually goes wrong, not what might go wrong. The information is accurate and reliable because it is based an the experience of tele-vision-servicemen, factory and distributor servicing departments.

SAMPLE DATA ITEM (1/3 OF ACTUAL SIZE)

(4)	(8)	Migr: Philco Model No. 5I-T1601T Card No. A-51-5 Code No. 121 and 122 Section Affected: Sync Symptom: Unstable syne in strong signal areas. Cause or Reason for Change: to improve sync performance in strong signal areas. What To Do: 1. Change R214 from 150 ohms to 220 ohms. Fig. A. 2. Change R606 from 240 K to 180 K . Fig. B.

HERE IS WHY YOU NEED THIS BOOK:

- 600 actual service data items (3 to a page).
- Handy schematic of only the actual circuits involved.
- 25 TV set manufacturers represented with over 50 chassis models.
- Loose-leaf bound in a 3-ring binder of finest quality, large enough to accommodate additional VSSS Data Sheets.
- Book lies open flat on your service bench, with all material plainly visible.
- Cross-indexed by manufacturer, chassis and cabinet model.
- Costs less than is per item.
- 2 Hours of your time saved more than pays for the entire book!

$$
\text { Order Direct From: } \quad \$ 』 .
$$

TV CIRCUITS CO.
P. O. Box 1210, Grand Central Station, New York 17, N. Y.

Custom - Styled for Hi-fidelity

Dimensions: $351 / 2^{\prime \prime} H ., 231 / 2^{\prime \prime}$ W.. $18^{\prime \prime} \mathrm{D}$.
Finishes: Blond Birch, Cordovan Mahogany on Birch.
Baffle Area: $61 / 2$ cubic feet.

bridge type, and full-wave battery charger. Any one of 12 rectifier stacks charger. Any one of 12 rectifier stacks
for use in a wide range of a.c.d.c. apfor use in a wide range of a.c.d
plications also mav be built.

LINE SPLICER

Mosley Electronics, Inc., 2125 Lackland Road, Overland 14, Mo., has designed a solderless transmission line splicer to provide a constant impedance splice of tubular-type 300.0 hm line to flatof tubular-type 300.0 hm line to flat-
tye new splicer (Catalog No. type. ine new splicer (Catalog No.
$29-S$) is intended for use with any of the tubular or oval types used for u.h.f. television installations.

The polystyrene splicer is so designed that the ends of the polyethylene transmission line insulation are completely
covered thus providina minimum strain on the conductors and considerable protection from the weather.

MINIATURE RELAY

The Phaostron Co.. Pasadena Ave. S. Pasadena, Calif., has announced a miniature double-pole, double-throw relay, weighing only $31 / 2$ ounces. The unit meets the shock requirements of
MIL.E-5400. M/L.E-5400.

Certain contact combinations can be furnished with a required coil power as low as 20 milliwatts and any relay in this series can be obtaned with a
coil resistance as high as 15,000 ohms.

UHF ANTENNA

Cornell-Dubilier Electric Corp., South Plainfield, N. J., has added another

U.h.f. antenna, the U-4, to its present line. The manufacturer claims broadband coverage with uniform gains over the entire u.h.f. spectrum, uniform gain with low vertical radiation and low standing wave ratio, and 300 -ohm internol impedance. Units are $12 \times 12 \times$ 5 inches, and may be stacked.

ANTENNA MOUNTS

T-V Products Co., Springfield Gardens, Long Island. N. Y. has announced a new chimney and a new wall mount. Both are made of steel $1 / 8$ inch thick and heavily plated to withstand corrosion. They are individually packaged with all necessary hardware.

ALL-BAND ANTENNA

RMS (Radio Merchandise Sales). 2016 Bronxdale Ave., New York 60, N. Y has announced an adiustable all-TVband conical- antenna, model loo, a high-gain end-fire array. permits positioning of anvangement permits positioning of any one or all (u.h.f.-v.h.f.), 90° (v.h.f.) and 180° (v.h.f.-v.h.f.), 90° (v.h.f.), and 180° v.h.f. Where stations come from widelv
separated points, but are in the same general direction). The pin bracket which retains the elements can be rotated so that the pin snaps into the hole positions giving the desired angle.

TRANSMISSION LINE
Alt-Channel Antenna Corp.: 70.07 Queens Blvd. Woodside 77, N. Y., is producing a 4 -conductor tubular transmission line for use with their u.h.f.v.h.f. all-direction antennas.

proximately 300 ohms between every 2 of the 4 conductors. It is obout $3 / 8$ inch in diameter. The 4 conductors each consist of 7 strands of No. 28 copper wire. Attenuation loss is claimed to be less than 4.1 db per 100 ft at
900 me when wet. 900 me when wet. END
 ence caused by Short Wave...F.M. Hams...Diathermy ...Atmospheric disturbances, etc.
With a TELEMATIC Full Range FILTER KIT

SIMPLE - SPEEDY - EFFICIENT

- Eliminates antenna-fed interference!

Covers full-range both I.F. and R.F.
Sharper, steadier picture!

- Fewer service recalls!
- Any filter in kit replaceable separately!

FILTER KIT
contains 2 Hi-Pass filters, 4 WavE TRAPS covering full range of interference signals. Send for FREE Booklet on TY-INTERFERENCE

Tirn lum

GAS-TUBE AMPLIFIER

Patent No. 2,619,622
Edward Oscar Johnson, Princeton, N. J.
(assigned to Radio Corp. of America)
This amplifier is based on a recently designed gas tube with special characteristics. This tube is shown in the figure as V2. It has a triode section, as well as an auxiliary cathode which is surrounded by a shield. The auxiliary (shown at the left of V2) keeps the gas ionized. This element is isolated from the triode elements so it cannot affect the work circuit.

The circuit shown here is adapted for a.f. amplification. Pickup is a phonograph or other audio source. The signal is first amplified by a vacuum tube V1. Then it flows into V2 to modulate the plate current of the gas tube. The control grid of V2 is not utilized in this particular circuit, so it is tied to the anode.
Two power supplies are shown, each suitably bypassed. 131 is the plate supply for V1 and also the ionization supply for V2. It keeps the gas tube filled with plasma, a mixture of electrons and positive ions. $B 2$ energizes the work circuit of the gas tube. It can be quite small, considerably below the ionization potential.

The input signal modulates the plasma density of V2 and controls the output voltage. Since the gas tube has low impedance, it is permissible to connect the speaker directly into its cathode circuit without a matching transformer. This im= proves the fidelity and reduces power loss. The tube can handle high power without difficulty. The plate current may be 150 ma or more. Efficiency is high since there is no filament. Furthermore, the tube drop between main cathode and anode is negligible.
Another audio circuit with this tube is shown in U.S. Patent 2,603,765, described on page 113 of our March issue.

STABILIZED ELECTROMETER

Patent No. 2,617,946
Barton L. Weller, Richland, Wash. lassigned to the United States of America as represented by the U.S. Atomic Energy Comm.)
This amplifier is stabilized against the effects of transient disturbances. It is shown here amplifying the output of an ion chamber (shown within the solid line). The chamber has a collector B surrounded by a cylindrical anode A, and is filled with gas. Between these elements is the grounded shield S. The chamber is energized by high-voltage d.c.

YOUR
 HIGH-PAYING
 interesting coreer in TELEVISION
 sfaris here!
 HOME STUDY COURSE

with one of America's LARGEST schools

There's a place for YOU in the tremendous, billion-dollar Television, Radio \& Electronics industry! It's so easy to get started with the famous CRESCENT SCHOOL course. Learn at home, in your spare time. Illustrated, simplified lessons and kits to practice on. No previous training needed. Send for FREE sample lesson... make this day the day you started on your way to a brilliant profitable career!

approved for korean vets

```
- Also Day & Eve. Classes
Trained of Our School
```


CRESCENT SCHOOL
 One of the Largest of its kind

at no obligation to me!\square Home Study Course Residential Course
NAME

- ADDRESS

CIT

U.H.F. and

THE VERSATILE CRYSTAL PROBE"
Solve your U. H. F. ANTENNA PLACEMENT and ORIENTATION problems the easy way! +
Get maximurr picture strength - eliminate ghosts - no more roof-top shouting - no expensive field strength meters needed! ONE MAN CAN DO IT !

Write for FREE bulletin today and other information about KLIPZON products.

UNITED TECHNICAL LABORATORIES
204 UTTLETON RD. t MORRISTOWN, N.

for eVery audio need

GANNON plugs

you can hear the difference

XL SERIES

In addition to the lines illustrated, the 45 E Test Point Jacks and connectors in the GB, U, and M1-4 series are available through the 130 selected franchised distributors forCannon Electric. Other electronic-electric distributors also sell certain items in the Cannon line, including XL, M1-4, and GB series connectors, and a variety of Cannon Specialty Lights. Write for the RJC and Audio Connector Bulletins.

CANNON ELECTRIC

Since 1915 FACTORIES IN LOS ANGELES, TORONTO, NEW HAVEN Representatives in principal cities. Address inquir ies to Cannon Electric Co., Dept. F-144 Los Angeles 31. California.

When gamma radiation acts on the chamber, the gas is ionized. Positive ions are attracted to cathode B and flow through the large resistor R. This generates a voltage drop which is amplified by direct-coupled stages. M indicates the radiation intensity, and P is the zero-set adjustment for balancing out the voltage drop across the meter due to the static plate current of the output tube.

Voltages on B and S are equalized by adjusting the contact on B1. Unless this is done, the signal charges and discharges capacitance Cl between the elements B and S. This slows the amplifier response because of the large time constant of R and Cl .
Feedback exists between the output and input of the amplifier. Each stage reverses phase by 180°, so the 3 stages provide negative feedback. This stabilizes the circuit against most circuit and power variations, but cannot act against transients. This is due to the large time constant of $\mathrm{R}, \mathrm{C} 1$, which prevents the feedback from acting quickly enough. Lowering R is undesirable since it would kill some of the high gain. This invention utilizes an auxiliary capacitor $\mathbf{C 2}$ to neutralize the effect of Cl

C2 couples the input grid to the high end of the feedback circuit. Thus feedback is applied directly to the grid instead of having to pass through R Speeding up the feedback action means that it can balance out the most rapid transients likely to occur in this type of circuit.

ORNAMENTAL TV ANTENNA

Potent No. 2,62!,293
Elmer Guy Hills, Des Plaines, III. (assigned one-half to J. N. Marks, J. Tunkl I. Rosenthal, and E. Lichtenstein, doing business as Tricraft Products Co., Chicago, III.)
An outdoor antenna is usually better for TV, but sometimes an indoor installation is needed. Results will be good if there is enough signal strength. TV owners often object to an indoor antenna because it uses too much space and may clash with the living-room furniture. This invention is a compact antenna built for beauty as well as utility. It looks like an attractive model of a sailboat.

The mast and boom of the boat are the pickup conductors. The mast is 17 inches long, the boom $151 / 2$ inches. They are supported by a polystyrene sail. A knob on the forward part of the deck tunes the antenna. For optimum directivity, the boom may be rotated through any angle. The lead-in comes out through an opening in one side of the ceramic hull
The insert shows the equivalent electrical network. The vertical and horizontal conductors are the mast and boom. They feed two coils which resonate the system on the low band. C, the tuning capacitor, shunts an autotransformer. This coil matches a 300 -ohm transmission line which feeds the receiver.

There is an application for every Oxford Speaker... and an Oxford Speaker for every application.

ELECTRIC CORPORATION

3911 S. Michigan Ave. Chicago 15 , Illinois

The man who brought back a smile

ECITED? Cynthia was practically bursting! Last thing Dad said was "Now you look close, Cindy. You'll see me right there in the audience tonight, and I'll wave to you." (They always do!) Long about three o'clock Cynthia's mother turned on the set . . "just to make sure." Well, there was a picture, if you could call it that . . . but so dim and fuzzy they'd never even recognize Dad that evening. And Cindy ... disappointed? She was brokenhearted! But, you know the happy ending . . . the serviceman's competent analysis . . . replacement of a worn-out tube with a Federal "Best-in-Sight" Picture Tube ... and there are smiles again.

Line of Popular-Size Picture Tubes will take care of over 90\% of ill TV replacements. Write For thee copy of Fediaral's TV Picture Tube Data Book, Dapto N-2e3

THE SERVICEMAN gives his customers years of experience and expert technical ability. His business is knowing what's best . . . and giving the best. Customers rely on his judgment just as thoroughly as he relies on Federal "Best-inSight" Picture Tubes for the sharpest, brightest, clean-cut picfures possible. He knows that when he picks up the carton with the blue and white Federal label, he's going to make some customer a lot happier for a long, long time.

Federal Telephone and Radio Corpotation

RADIO-ELECTRONIC CIRCUITS

ONE-TUBE TRANSCEIVER

The simplest form of v.h.f. or u.h.f. transceiver consists of a single-tube unit designed to receive and transmit on the same frequency. The tube is used as a superregenerative detector when receiving and as a plate- or gridmodulated oscillator when transmitting.

One particularly annoying characteristic of this type of equipment is that it is virtually impossible to maintain the same frequency for transmitting as for receiving. When the equipment is switched from one mode of operation to the other, the differences in circuitry and operating potentials cause the frequency to shift despite the fact that the same tuned circuits are used for receiving and transmitting.

Above is a transceiver circuit incorporating an invention (covered in patent 2,611,858 issued to Robert E. Samuelson) which permits the equipment to operate as a transmitter preset to one frequency and as a receiver tunable over a range of frequencies within a band.

L1, L2, and L3 are coaxial-line tuning elements. The grid-cathode circuit is tuned by the movable shorting bar between L1 and L2, and the plate-grid circuit is tuned by adjusting the shorting bar between L2 and L3. Feedback necessary for oscillation is obtained through the coupling between L2 and L3. The antenna is coupled to the transceiver by a hairpin loop placed close to L2 and L3.

L4 is a $3 / 8$-wavelength parallel-wire transmission line shunted across sections of L2 and L3 with a variable capacitor C 1 connected across its outer end. The combination of L 4 and C 1 acts as a type of bandspread tuning circuit connected across L2 and L3.
The send-RECEIVE switch S 1 is a relay or a manually operated switch of any convenient type. It may be an insulated rod with metal flanges or rings which serve as $\mathrm{S} 1-\mathrm{a}, \mathrm{S} 1-\mathrm{b}, \mathrm{S} 1-\mathrm{c}$, and S1-d. The switch is shown in the RECEIVE position. In this position, L4 and C1 form a parallel-tuned circuit which permits the receiver to be tuned over a range of frequencies.

R3 is the detector load. The audio
voltage may be taken off the plate side of the resistor and fed into headphones or a power amplifier for a speaker. R1 and R2 are connected in series as the receiving grid leak.

When S 1 is switched to SEND, S1-a acts as a shorting bar connected across L4 at the quarter-wavelength point. C1 is now shorted out and the frequency is determined by the position of S1-a on L4 and by the tuning of the coaxial lines. S1-b and S1-c switch the secondary of the modulation transformer T1 into the plate circuit and disconnect R3. S1-d grounds the junction of R1 and R2, so R1 is used alone as the transmitting grid leak.

SELECTIVE CRYSTAL TUNER

To increase the usefulness of my phono amplifier, I constructed a simple crystal broadcast tuner for receiving two local stations on 1230 and 850 kc . The stations were selected by switching preset trimmer capacitors across a coil. With this simple arrangement, the circuit was not selective enough to prevent both stations from being heard at the same time. The unwanted station could still be heard in the background even when separate coil and capacitor combinations were used for each station. Finally, the problem was solved by using the circuit arrangement shown in the schematic.

Fig. 1-Two-channel crystal tuner.
Circuit A is pretuned to station A and circuit B to station B. When station A is selected-as drawn in the schematic of Fig. 1-parallel-tuned circuit B is in series with the antenna circuit so it rejects station-B signals. Signals from station A pass through circuit B and are applied to circuit A and the detector. When station B is

Fig. 2-Tuner assembly is compact.

Now! HANDLE UP TO
90% OF TV TROUBLES

by the easy PICTURE ANALYSIS METHOD!

By Ghirard. \& Middle:on

Covers 24 common actual screen pnotos

- - 190 possible causes of these troubles
localized to receiver stage or section where they are most likely occur

step remedles.

- 4,500 words I CAUSE AND REMEDY section to how just what to do. Dept. RE-63, RINEHART BOOKS, Inc., Technical Div., 232 Madison Ave., New York 16, New York

ENJOY 3 COLOR TELEVISION

 FILTER SCREEN NOWChanges dull eye-straining black-white pictures into beautifut color tones. Seconds to attach. Send $\$ 1.50$ for
 $\$ 4.00$ size 24^{7}. Money back guarantee if not delighted. Zingo Products, Johnstown 13, New York

Poof! theregoes NOISE:

SPRA-KLEEN
contact cleaner \& lubricant

- No More Eyedroppers
- Can't Spill
- Can't Break - Can't Evaporate
- Cleans \& lubricates in one operation

Available thru jobbers
WARD E. RICE INDUSTRIES
P.O. Box 1705, Glen Park Sta., Gary, Ind.

OPPORTUNITY ADLETS

Rates-45c per word (Including name, address and Mitials). Mmimum alaced wy accedited agencles Dis count. 10% for 12 issues. Misleading or objectionatile ads not accepted. Cony for August issue must reach us

Radio-Electronics, 25 W. Broadway, New York 7, N. Y.

SELLL USED TELEVISION RECEIVEISS. Large market Prices start at $\$ 10$ and up. Buy direct from us. Up to 2 inch sets aralable. Send forty eents for price flats and descriptions. Ace Television, 401 N . Burdick St. Kala mazoo, Michigan

SPEAKERS KETAIRED at wholesale nrices. Guaranteed worknanship. Fast servlce. Amprite Speakers Service, 70 Vesey S1., New York 7, N. Y.

ISOLATION TIRANSIFORMER 35 w 117 v sec 117 or 135 plus $6.3 v .45 a$. $21 / 4 \times 21 / 2 \times 3$. $\$ 2.45$ include postage 3 Empire Electronics Co., 4096 ave. L. Bracklyn 30 . N Y

TUBES AND EQUIPMENT BOUGHT. SOLD AND EN CuBES AND ERUGMEI For fair deal send details to 13. N. Genster
W2LNI. 136 Liberty. N. Y. 6, N. Y.

1000 THERMOGRAPHED (EMBOSSED) BUSINESS CAirDS- $\$ 4.50$. Free Sample. Kiain, 980 Simpson Street, New York 59.

WANTED: AN/AI'R-4, other "APR-", 'TS-". "IE-" ARC-1, ARC-3. ART-13, BC-378. etc. Microwave Equipment, everything Surplus. Special tubes, Tec Mlanuals. Lat Top Dollar! Littell. Farhills Box 26. Dayton 9, Ohio.

ALL TYPES OF ANTENNAS FOR AMATEUR AND TV, Aluminum rubing. Willard Kadeliff. Fostoria, Ohio.

RECONDITIONED TELEVISIONS. $\$ 30$ UP. W4API, 1420 South Randolph, Arlington, Virginla.

TV.FM ANTENVAS. ALI TYIPES IVCLIIDIXG UHF Mounts, accessories, Lowest prices. Wholesale Supply Co
Lunenturg 2. Mass.

One-Fingered Pianists

Build your own 3-octave electronic keyboard and play everything! Uses 8 octal tubes, 16 stops, 2 -octave extension \& variable aftack. Guitar, cello, fute, trumpet Six full data sheets \& booklet detail simple instrue tions. $\$ 4.50$ Air Post paid Money orders to H. R. McDermott, 10 Duke Street Darlington, Co. Durham, England.

PHOTOGRAPHS

 RADIO-ELECTRONICS can use good photographs ofservice benches, service shops, high fidelity audio tay. service benches, service shops, high fidelity aud io lay.
outs, and ont interesting and original radio.
electronic devices. electronic devices.
We will pay $\$ 6.00$ each for good professional photos or equivalent, suitable for reproduction. Full information on subj
crease their acceptability.

The Editor, RADIO-ELECTRONICS 25 West Broadway. New York 7, N. Y
selected, circuit A is switched in series with the antenna lead to reject signals from station A

The circuit was built into the case of a surplus type MC-385 headset adapter as shown in the drawing at Fig. 2. I simply plug it into the microphone jack on the amplifier and connect an antenna whenever I want to receive either of the two predetermined loca! stations. - R. B. Dhurи

U.H.F. YAGI ANTENNA

Many TV set owners have had good results with v.h.f. TV Yagis and are now planning to construct similar ones for u.h.f. TV channels which have opened or are about to open in their localities.

A six-element Yagi designed for a forward gain of 9 db with a good frontto back ratio on u.h.f. TV channels is described in Sylvania News. Its construction and design constants are shown on the diagram. The table gives element lengths and spacings in decimal parts of the wavelength. On u.h.f. channels, one wavelength (in inches) at the center of a given TV channel can be derived from the formula:
λ (inches $)=\frac{11,800}{(6 \times \text { u.h.f. channel No. })+389}$ Or refer to the chart on P. 38 of Radio-Electronics, January, 1953.

The boom is a $3 / 4 \times 3 / 4 \times 32$-inch piece

at any pricel
of wax-impregnated oak fastened to its support at the end beyond the reflector. The folded-dipole radiator provides a good match to a 300 -ohm transmission line. It is constructed from $1 / 4$-inch and $1 / 8$-inch brass tubing as shown in the diagram.

Yagi Dimensions inWavelength Wavelength	
Dimension	0.215
S1	0.240
S2	0.200
S3	0.290
S4	0.285
S5	0.495
L1	0.450^{*}
L2	0.430
L3	0.430
L4	0.420
L6	0.415

*L2 is length of $1 / 4$-inch dipole element.

STABLE TEST OSCILLATOR

I believe this test oscillator, despite its simplicity, is equal to many commercial ones, and perhaps even has some added features. The circuit consists of a 6SA7 oscillator with grid 1 used for modulation. A 6J5 cathode follower isolates the oscillator from the test circuit, preventing the external circuit from affecting the tuning or output. A $1,000-$ ohm potentiometer serves as an output control, while the 1 -megohm fotentiometer in the 6SA7 oscillator grid circuit is the modulation control.

The only components in the circuit which are at all critical are the coils. Even there a wide choice is possible. For example, a set of standard plug-in coils and a $140-\mu \mu f$ variable for C will give wide coverage without complex band-switching. Alternatively, a 365$\mu \mu \mathrm{f}$ capacitor and a set of all-wave antenna coils can be used. Other components are not at all critical, and an extremely wide choice is possible. The oscillator tube can be replaced with any pentagrid type, provided the proper arrangement of grids is used, while almost any triode or triode-connected pentode can be used as the cathode follower.

For the audio source, you can use your audio oscillator externally, or wire a simple one into the set. Alternatively, you can connect the audio input terminal to the hot side of the 6 -volt a.c. heater line.

Despite its simplicity, this circuit will fulfill all AM and many FM and TV assignments. Furthermore, it is an extremely well-behaved circuit, and, provided proper care is taken in construction, it should work the first time.Charles Erwin Cohn

END

This Month Only-TAKE 5\% OFF EVERYTHNG!

 Now! \#630 SUPER DELUXE 31-TUBE TV KIT ${ }^{*}$ U.H.F.
ONE SET U.H.F. STRIPS INCLUDED FOR ANY U.H.F: STATION-NO EXTRA CHARGE OPERATES ALL $10^{\prime \prime}$ TO $24^{\prime \prime}$ PICTURE TUBES

Engineered in strict adherence to the genvine
RCA $\# 630$, plus added features $\star \star \star \star t$ NOTHING BETTER AT ANY PRICE!

- Standard Cascode Turret Tuner for DX
- Cosine 70° Deflection Yoke for Definition
- Original 630 Synch. Chain for Stability
- 16 KV for Clarity and Brilliance
- Fast Action Pulse Keyed AGC
- Large Concert-tone $12^{\prime \prime}$ PM Speaker

COMPLETE SET OF PARTS including the components of the STANDARD KIT plus added features, more tubes, doubler components, AGC components. Cascode tuner, Cosine 70° deflection yoke, $12^{\prime \prime}$ speaker, etc., and the Brooks LIFE-SIZE instructions (less CRT \& wire)

only . . \$119.44

HOW! \#630 SUPER DELUXE 31-TUBE TV CHASSIS W.H.F. - Litened meder ONE SET U.H.F. STRIPS INCLUDED FOR ANY U.H.F. STATION-NO EXTRA CHARGE COMPLETE READY TO PLUG IN AND PLAY including a!! tubes, CRT mounting brackets, 12 " speaker, etc. No
charges for extras of any kind. Each set is factory aligned and air tested. All parts are guaranteed 3 months. Our booklet
"HINTS FOR BETTER PERFORMANCE ON YOUR \#b30 TV RECEIVER" is supplied with each set........ Your best buy of

A PLAN TO SAVE YOU MONEY

PACKAGE DEALS-Each containing an assortment of the most desirable types and sizes to enable you to get the most amount of repairs done, with the least investment in parts,
at a cost of only $1 / 3$ than if bought separately! at a cost of only $1 / 3$ than if bought separately
RESISTOR and CONDENSER CODE CHARTS FREE with EACH ORDER
100 CONDENS ERS
All are Standard Brands \& Desirable Sizes $\$ 15.00$ Value Only \$/,69

STANDARD PICTURE TUBES

brand new - With a Full Year Guarantee $16^{\prime \prime}$ - 16AP4A (Round, Metal, Black)... $\$ 28.97$ $16^{\prime \prime}$ - 16 GP4A (Round, Metal', Black).... 28.97

 $21^{\prime \prime}$
$\mathbf{2 4}$
\#630 Parts in COMPLETE SETS
TV WIRE \& SOLDER KIT, for any Set. 630-KIT, SCrews nuts, rivets, wash
TERMINAL STRIP KIT, set of 30
YIDEO AND IF. KIT. VIDEO AND I.F. KIT,' 19 items.
AGC KIT. complete with instructions VARIABLE CONTROL KIT, 9 controls. CARBON RESISTOR KIT, 107 resistors.
WIREWOUND RESISTOR KIT,
4 resistor WIREWOUND RESISTOR KIT. ${ }^{4}$ resistors BRACKET AND SHIELD KIT, 18 items ELECTROLYTIC CONDENSER KIT. 6 cond.
TUBULAR CONDENSER KIT, 38 condensers TUBULAR CONDENSER KIT, 38 condensers MICA CONDENSER KIT, 11 'condensers. MICA CONDENSER KIT; 11 condensers. GRACKETS 6.97

PARTS For \#630 TV SETS

PUNCHED CHASSIS PAN, cadmium plotedS 4.87 STANDARD CASCODE TUNER, incl. tubes. 22.49 ESCUTCHEON PLATE, COMPLETE SET OF KNOBS, incl. decals. POWER TRANSFORMER, 295 ma .201 Tb . VERTICAL OUTPUT TRANS. VERTICAL BLOCKING TRANS. HORIZONTAL OUTPUT TRANS. HORIZONTAL OUTPUT TRANS. FOCUS COIL, 247 ohms, FOCUS COIL, 470 ohms, DEFLECTION YOKE, 60° DEFLECTION YOKE, COSine 70° SOUND DISCRIMINATOR TRANS 206 OI SOUND DISCRIMINATOR TRANS.203KI 1st PIX I.F. TRANSFORMER, 2nd PIX I.F. TRANSFORMER, 1st or 2nd SOUND I.F. TRANS. 201 KI HORIZONTAL DISCRIM. TRANS. 208 T8 FILTER CHOKE, 62 ohms CUSTOM-BUILT CABINETS
2 LEADING STYLES in genuine mahogany or walnut Ready drilled for any \#630 TV chassis and cutout for any 14 " to 21 " picture tube at no extras in price. Also supplied with undrilled knob panel for any other TV set. Delivered complete as pictured.

The VOGUE Most Popular
Table Model.

$\$ 39.89$
VOGUE also avallable
or $24^{\prime \prime}$ or $27^{7 \prime}$ picture tube H1-31", W-27", D-23"

${ }^{5} 62.54$

\$59.37

1-HINTS FOR BETTER PICTURES ON 630 TV 2-630 TV DIAGRAM WITH MODIFICATIONS 3-ILLUSTRATED TV CONVERSION MANUAL 5-RMA RESISTOR \& MICA CODE CHARTS All for only...... \$1.00 Postpoid

Brooks CASCODE MANUAL. How to install

Cascode Tuner in any make TV set 50 e

EXPERIMEHTERS SPECIALS

${ }^{1}$ RPM MOTOR 115 volts, 60 cycles. Syn-
chron model 600 . Use for chron model 600. Use for
timing devices. models,
displays, gadgets, etc. Stock No, RE-5 Price $\$ 2.95$

AMPERE DEMAND METER
 Stewart Warner-748A. In.
dicates up to 20 Amperes
long time average long time average current
drain. High time lag-
follows heating effect of tollows heating effect of
supply transformers. Use supply transformers. Use
to check motor and line
Overload as will Verneck motor and line
overoad as well as peak
average demand. Indicataverage demand, Indicat-
ing average and average
peak recorder pintera
Stock No. RE-119
Special @ \$3.95 each

Redmond 6 vole DC Motor An theal ssmatide moter
 ates from 6 volts de. ${ }^{2 / 5}$
3000 rpm. Requtres 1.75
amperes for $1 / 100$ hoise Stock No. RE-137 Special \$2.95 each

RESISTOR XIT

\qquad
Drafting Machine-Manufactured by Star watch Case Co. as Vector Plotting Machine Type AN-
5748 . Converted hy tis with two $18^{\prime \prime}$ arms, adjustable angle hetween arms. Arms to hot hare inch scales. Ident for elrice $\$ 2750$ Write ior free catalogue of Electronc. Atreratt, Hy.

ELECTRO DEVICES, INC.

FREX
 THE HOTTEST VALUEPACKED BULLETN IV TIE MAILS:

Pover 153,000 subscribers buy and save through WHOLESALE RADIO'S
buy and save thr BULLETIN EVERYTHING HI-FI SOUND

Write for
 New FYI
 \# 102

Just Off
The Press

C-R TUBE CHECKER ADAPTER

The three drawings show the wiring of harnesses which I use to check some common types of oscilloscope and television picture tubes in my Jackson model 636 and Precision 954-G tube checkers. The tube checker supplies the necessary voltages and the C-R tubes can be checked without removing them from the equipment in which they are installed.

meaum shell 12 Pin ihepral socket

The settings for the Precision 954-G are: 6-6-15-5-1-1-D and settings for the Jackson 636 are: Normal $-6.3-30-4 \mathrm{JKR}$. These settings are used for all types of tubes. The checkers will indicate low emission, shorts, and slow heating.
The adapter-harnesses are made from octal plugs and cathode-ray tube sockets. Tubes which use base connections and dimensions the same as the 7EP4, 7JP4, and 10BP4 can be checked with these harnesses.-Hyman Herman

DIODE NOISE CLIPPER

One plate of the duo-diode-triode second detector and a.f. amplifier tube is grounded or left floating in many small receivers. This diode can be used as an effective noise clipper. The common procedure is to tie the unused diode directly, or through a switch, to the control grid of the audio output tube. Although the diode clips the noise peaks, this connection is often unsatisfactory because it causes severe distortion on peaks of the audio signal.
The diode may be used for noise clipping without distortion by modifying the circuit as shown by the heavy lines in the diagram. The effectiveness and smoothness of this circuit is the
for dependable sound, INDUSTRY relies on

FULL-GRIP, VELVET-
DEPENDABLE QUALITY:
The latest electro-acoustic research and engineering-and over 20 years of monufacturing know-how-are behind every ATLAS product.

DEPENDABLE SERVICE:
Coast-to-coast and around the world today-in every Industrial, Marine, Railroad, Mistary, Edueational, Civic, U.S. and Foreign Government appli-cation-under every kind of climote and noise condition - ATLAS sound equipment is fomous for highest eff. ciency and durability. That's the proof of ATLAS perfarmance depend DEPENDABLE DELIVERY: Yes, ATLAS gives our Governmen highest priority. And yes, we too feel the pinch of material shortages. But usual dependable delivery-becouse we believe in equitable and depend able distribution to all ATLAS users.

DEPENDABLE PROFITS:

Completeness of line, excellence of product, dependable delivery, right that means high, steady industrial Sound profits for Youl

JUDGE for yourself, COMPARE ATLAS at your local Jobber today. See why ATLAS is the preferred line for utmost
dependability. Write NOW for FREE dependability. Write NOW for FREE

ACTION Mike Stonds

RYTEL—another name for QUALITY
Manufacturers of $Y H F$ and UHF ANTENNAS. AlM (automatic impedance match). UNIVERSAL tube pullers, antenna connectors, vent pipe clamps and auto speaker grill kits.
RYTEL ELECTRONICS MFG.CO. 9820 Irwin Ave.
result of the addition of two inverse feedback loops. One loop feeds back some signal from the output plate to the cathode of the preceding stage. The other loop is connected between the

plate and grid of the output stage. The cathode of the triode is disconnected from ground and a 120 -ohm resistor is inserted in series with the cathode re-turn.-George D. Philpott

VIBRATOR TESTER

The diagram shows the construction of a simple tester for 4-prong vibrators of either the shunt-coil or separatedriver types. The tester uses one 4prong vibrator socket; three G-E type 63 automobile license-plate lamps; three single-contact bayonet sockets; a nor-mally-open push-button switch; and a 10 -ohm wirewound potentiometer (an ancient filament theostat will do)
To calibrate the tester, plug a new vibrator into the socket, press the test button, and adjust the variable resistor until the standard lamp PL1 has the same brightness as the indicator lamps PL2 and PL3. The tester is now ready for use.

To check a questionable vibrator, plug it in, press the switch, and watch the lamps. The brightness of the lamps indicates the condition of the vibrator. Indicators PL2 and PL3 should be just as bright as PL1. You can familiarize yourself with the operation of this unit by testing vibrators which you know are bad.
I've used this tester for more than a year. It spots defective vibrators in seconds.-Benito Tan

BAD SPOTS IN TV CONTROLS

Sometimes you may run across a TV set in which a centering control or similar potentiometer on the back has a bad spot at the proper operating position. When a replacement is not available or the job does not warrant a replacement, you may be able to improve the operation of the defective control by reversing its two outside connections. This will switch the optimum operation to the opposite end of the range and eliminate the erratic operation which is usually caused by the bad spot on the resistance element. -Leonard Pfeiffer

ENGINEERS!!!

Bendix Radio

oivision of bendix aviation corporation BALTIMORE-4, MD. Phone: IOWSON 2200

AMPLIFIER CORP.
 of AMERICA

398 Broadway, N. Y. 13, N. Y. any recording need. High fidelity units, meeting primary and secondary NARTB standards, which record and play back frequencies up to 15,000 cycles, are available for broadcast stations, critical music lovers, and scientific research. For investigation, missionaries, reporters, and general dictation while traveling, there are units which play up to 2 hours per reel of tape. Write Dept. 10 for complete descriptive literature

INDOOR YAGI FOR TV

Recently, I moved into an apartment house where the landlord did not permit TV antennas to be attached to the roof or any other part of the building. Since I live in the deep fringe area-about 95 miles from the nearest TV stationit seemed that an indoor antenna would be entirely useless. In desperation, I installed a rabbit-ears antenna and a Regency booster. I received weak sound and no picture on channel 5 and a very weak picture and sound on channel 2 .

The next step was to cut a folded dipole for channel 2 , using 300 -ohm ribbon line. After attaching a lead-in, I held the dipole as high as possible, moved it around the room until I found where the signal was strongest, and taped it to the ceiling at this point. This antenna (with the booster) provided a signal which was much stronger than the rabbit-ears but not strong enough to provide a picture which could be viewed comfortably.

Next, I decided to convert the antenna to a Yagi to obtain more signal with less interference. Shorted lengths of 300 -ohm line were taped to the ceiling and used as parasitic elements. The diagram shows the dimensions which gave the best results. The optimum element spacing is the result of a lot of trial-and-error experiment in an effort to feed the strongest possible signal into the receiver. Reception was further improved by wrapping a tinfoil slider around the lead-in and positioning it for the clearest picture.

This antenna, together with the booster, provided a much stronger signal than was expected. The picture was not excellent but it was good enough to watch and enjoy. Late in the evenings the signal strength often increases to the point where the picture compares favorably with those received in primary service areas.

After completing the Yagi, I obtained permission to install an outdoor TV antenna in the back yard. I now have a 4 -bay conical mounted 20 feet high on a pole. With this array, reception on channel 2 is only slightly better than that obtained with the indoor Yagi, but has the advantage of also providing fairly good reception on channels 5 and 8.-G.N. Manning.

Type	Price	Type	Price	Type	Price	Type			
1 A 5 GT	. 30	3 V 4	. 47	6BG6G	2.25	605	Price	Type	Price
1A6G	. 30	5U4G	. 45	68H6	. 26	$6 \mathrm{G6}$. 63	1417	. 30
1A7GT	47	5 V 4	. 73	6BJ6	. 39	648	. 61	196GG6G	. 30
1 AB5	. 30	5W4	. 50	6 BK 7	. 59	GVGGT	. 39	198G6G	
183	65	5×4	40	6BL7	. 59	6W4GT	. 44	19 l	70
185	. 30	5 5 3 G	. 32	6BQEGT	. 59	6w6GT	. 44	19 V	
187GT	. 30	5 Y3GT	. 32	68 Q7	. 95	6×4	. 37	24A8	
$165 G T$	43	$5 \mathrm{Y4G}$. 35	6827	. 95	$6 \times 5 \mathrm{G}$. 37	24 2AVS	${ }^{63}$
$1 E 7$	29	523	. 46	$6 \mathrm{C4}$. 37	6×8	. 61	258 BQGGY	
$1 \mathrm{G4GT}$	24	647	. 59	6C5GT	. 39	6 6Gg	. 48	25 LGGT	62 39
$1 \mathrm{l}{ }_{1} \mathrm{H} 6 \mathrm{G}$	30 30	648.	. 62	${ }_{666}$. 58	$7 \mathrm{A4}$. 47	25w4.	. 56
IH5GT	40	GAG5		${ }_{6}^{6 C 8 G}$	24	$74 F$.53	2525	. 40
$1 \mathrm{H6}$	24	6as5	.90	${ }_{6 C D 6 G}$.44 1.11	784	44	2576 GT	. 37
$1 J 6$	24	6AK5	75	6D6	. 45	$7 \mathrm{E6}$. 45
$1 \mathrm{L4}$	46	6AL. 5	. 38	6E5	. 48	7×7	. 70	27	. 39
$1 \mathrm{LC5}$	51	6 AQ5	. 39	6F5GT	. 39	1248	. 61	32 Cb	. 89
1 N5	. 46	GAQ6	37	6 F6	. 37	$12 \mathrm{AL5}$. 37		
$1{ }^{195}$. 57	GAR5	. 37	6F8G	24	12AT6	. 37	3516 GT	. 49
105	58	6ass	. 50	6G6G	. 52	12 AT 7	. 56	3514	
125	45	GAT6	37	6H6GT	41	$12 \mathrm{AU6}$. 38	3524	
155	. 39	GAU6	. 38	6J5GT	. 37	$12 \mathrm{AU7}$	43	3525GT	. 37
175	. 53	GAVE	. 83	${ }_{6}^{6 J 6}$. 52	12 l		36	
144	45	6AX4	6\%	${ }_{6 J 8}{ }^{\text {¢ }}$. 30	12 AXA	. 48	42	
145	39	$6 \mathrm{~A} \times 6 \mathrm{C}$. 24	6 k 5	. 47	124×7	48	43	
1 V	. 60	684G	. 64	6K6GT	. 37	$12 \mathrm{Az7}$. 69	${ }_{45}{ }^{5} 5{ }^{\text {a }}$	
${ }_{243}^{1 \times 2}$. 73		. 39	6 67	. 24	12 BAG $12 \mathrm{BA7}$.38 .60	5085	
244 G	. 24	$6 \mathrm{BC5}$. 44	$6 \mathrm{6L5}$. 64	12887 12806	. 45	50 Cs	
2×2	1.50	$68 C 7$. 34	$6{ }^{6} 7$	45	$12 \mathrm{BE6}$. 39	S0k6gi	. 41
347	. 45	6ED56	. 59	654	. 38	12 BFG	. 39	$50 Y 7$. 50
3 ES	46	6806	45	658	. 53	$12 \mathrm{BH7}$. 63	53	. 24
20959T	48	68E6	. 39	6SA7GT	43	$12 \mathrm{BY7}$. 65		. 24
254			. 41	65076T	. 41	12 CB 129	. 34		.60

TERMS: A 25% deposit must occompany alł orders-balance C.O.D. All shipments F.O.B. Irvington warehouse. Orders under \$10-\$1.00 handling charge. Subject to prior sale. Don't Delay ... Order Today!

115 COIT ST.

Dept. RE 6 IRVINGTON II, N. J.

SUBSCRIBERS

If you're moving, please don't forget to send us your address as it appears on the copy of the magazine, including the numbers shown beside your name, as well as your new address.

If we receive this information before the 20th of the month, you will continue getting the magazine without interruption. Your cooperation will be most helpful and greatly appreciated.

CONVERTING THE JFM-90

? I have an old G-E JFM-90 FM tuner that I would like to convert to operate on the 88 to 108-me FM broadcast band. I will appreciate any help that you can give me.-J.J.McG., Fitchburg, Mass.
A. Fig. 1 shows the changes which may be made in the front-end of the JFM-90 tuner and similar G-E receivers to permit operation on the FM broadcast band. Coded components have the same values and occupy the same positions as in the manufacturer's schematic.

Fig. 1-G-E JFM-90 circuit revisions.
Replace the 7A4 oscillator with a 6AB4 or 6J6 to minimize drift. The 7-pin miniature oscillator socket connections permit the use of either type without change. Solder the $10-\mu \mu \mathrm{f}$ N750 ceramic cathode capacitor directly between socket terminals 4 and 7 at one end, and 5 and 2 at the other. Ground terminals 5 and 2.

Rewind the antenna and oscillator coils L1 and L3 on a polystyrene or mica-filled rod the same length and diameter as the original form. L1 consists of 2 turns of No. 18 bare wire spaced to a winding length of $5 / 10$ inch. L3 has 6 turns of No. 20 enameled wire closewound and spaced $1 / 8$ inch from L1. Tap L3 at $13 / 4$ turns.

Fig. 2 shows the method of mounting L1 and L3 and connecting one end of L1 to the 72 -ohm antenna-input terminal. Instead of connecting the an-

Fig. 2-New coil-mounting arrangement. tenna to a tap on L1, connect it to a point on the ground lead which gives maximum signal and minimum noise. For a 300 -ohm lead-in, the optimum tapping point will be somewhere on L1.

Connect the $40-\mu \mu \mathrm{f}$ fixed and $25-\mu \mu \mathrm{f}$ variable ceramic capacitors in series with the stator of the oscillator tuning gang C1-a. Connect a $7-45-\mu \mu \mathrm{f}$ N500 ceramic trimmer across C1-a. Mount the 68 -ohm resistor under and in direct contact with the 7-45- $\mu \mathrm{f}$ trimmer so it will warm the trimmer.

Replace the r.f.-trimmer capacitors (C3 and C4 on the manufacturer's diagram) in the grid circuits of the first and second converters with $2-20-\mu u f$ NPO ceramic types.

1. Veitri, busy service-dealer
of Westchester, N. Y, reports:
I SAVED 940^{*}
by making a $\$ 59$ INVESTMENT in a Transvision FIELD STRENGTH METER

* Says Mr. Veltri: ". . . The way I figure, in the last 6 months I saved that much money in installation time alone

FIELD STRENGTH METER
Saves 50% of Installation Cost
Pays for itself on 3 or 4 jobs

NO TV SET NEEDED

Works from antenna
Measures actual picture signal strength directly from antenna. Shows antenna orientation maxima. Compares gain of antenna systems. Measures TVI on all channels. Checks receiver reradiation (local oscillator). Permits one man antenna installation.

PREVENT WASTE OF SERVICING TIME! By checking antenna performance with the Field Strength Meter, the serviceman can determine whether the TV set or antenna, or both, are the source of trouble. Call backs are eliminated.
 insure accuracy with direct meter read. ings on the FSM.

Don't lug sets. The Transvision FSM makes installation easy.

Wide range: Measures field strength from 10-50,000 microvolts. Has Fringe Area Switch for weak signal areas. 13 channel selector. Individually calibrated on every channel.

ADAPTABLE for UHF
Model FSM-2, for 110 V AC only. Complete with tubes. Wt. 13 lbs. net $\$ 59$
Model FSM-3B, for 110V AC and Battery Operation (all batteries and cables included). Wt. 22 lbs. $\$ 79$.

Order direct from factory:
TRANSVISION INC., NEW ROCHELLE, N. Y.
FREE: Sample copy of "TV and Electronics

EVERY SERVICE SHOP CAN MAKE BIG MONEY with these PATENTED INSTRUMENTS for 1. TESTING picture tubes accurately.
2. REACTIVATING dim or worn out tubes. 3. SPARKING OUT electrical leakage

CRT TESTER-REACTIVATOR-SPARKER

3 instruments in 1, making a complete CRT testing ond repair unit . . . It's a combination of the Transvision Tester-Reactivator handy unit. It TESTS picture tubes-measures Cathode emission, locates shorts between elements, locates high resistance shorts or leakage as high as 3 meg . ohms. REACTIVATES dim tubes. SPARKS OUT electrical leakage.
$\$ 34.95$ net

CRT TESTER—REACTIVATOR
2 Instruments in 1 . . . As a REACTIVATOR it renew brightness and detail of dim CR Tubes, without removal of tube from set. It's also an accurate TESTER same as the above $110 \mathrm{~V}-60$ cycles; wt. 3 lbs.
only \$1995 net

CRT TESTER-SPARKER
2 Instruments in $1 \ldots$ As a SPARKER, it sparks out
elements. Saves many picture tubes and small tubes which would usually be discarded. Cathodegrid leakage is an especially common occurrence. The Sparker also gives a rapid check of gas condi tion of the tube.

As a TESTER it provides a variable 8,000-14,000 Dor. supply-userul to-solve defeet hard problems........ $\$ 25.95$ net

Order direct from factory:
TRANSVISION INC., NEW ROCHELLE, N. Y.
FREE: Sample copy of "TV and Electronics Nates". Or send 50c for year's subscription 10 DAY TRIAL: Buy and tyy these fine instruments for 10 DAYS. Then, il you wish, you may return them. rapackeging) will be promplly refunded.

```
-------------None
```

```
DEPT, RE-SR NRANSISION,NW ROCHELLE, N. Y
() Send me
( ) Enclosed find $
```

\qquad

``` deposit. Bolance C.O.D
( ) Enclosed find \$
``` \(\qquad\)
``` full.
accept your 10 Day Trial terms.
```

\square

```
```

Address

```
Address
City.
TRANSVISION INC
DEPT. RE-SR NEW ROCHELLE, N. Y
```

\qquad

```
City State
```


Replace the first-converter plate coil with a National type AR-5 slug-tuned v.h.f. coil.

Fig. 3-Tuning indicator for JFM-90.
Fig. 3 shows the connections for adding a 6AL7 tuning-indicator tube.

MODULATING SCR-274-N RIGS

? I have converted several SCR-274N and ARC-5 transmitters into 120 watt ham rigs. My trouble is that when I try to plate-modulate them, distortion is heavy when the modulation exceeds about 50%. The 80 -watt modulator does not distort when operating into dummy load or when used with other rigs. Why do I get distortion with these rigs? How can I eliminate it? The final-amplifier B plus lead connects to the secondary of the modulation transformer. $-N$. C., Bronx, N. Y.
A. Pentodes and beam-power amplifiers should be modulated by applying the audio signal simultaneously to the screen and plate. The diagram shows a simplified circuit of the power-amplifier stage in the SCR-274-N transmitters. Disconnect the screen supply lead from pin 4 of the power plug on the rear of the chassis. Substitute a $50,000-$

ohm, 20 -watt resistor for R78 and connect the screen supply lead to pin 7 on the power plug. Substitute a $300-\mathrm{ma}$, $2.5-\mathrm{mh}$ r.f. choke for R 76 in the plate supply lead. Replace the plate bypass capacitor (C66) with a . $002-\mu \mathrm{f}, 2,000$ volt unit. Connect pin 7 of the power socket to the top of the secondary on the modulation transformer.
The distortion was probably caused by failure to modulate the screens and

Now... INSURE BEST RECEPTION with the FINEST TV CHASSIS EVER DESIGNED TRANSVIIIon $630^{\text {pes.ese }}$ with High-Fidelity Sound
Mfr. licensed under RCA patents

Embodies the latest and finest improvements, notably:

- Super Fringe Area Circuit
- Redesigned for Peak UHF Performance
- Hi-Fidelity Push-Pull Audio (40-13,000

net Plus 10\% Fed. Tax CRT EXIRA Cycles)
- 12" Hi-Fidelity Speaker

In this space we can mention only a few of the other great features of this DeLuxe Chassis: 31 tubes (28 ubes, Only rectifier tubes-plus CRT makes 32 tubes) densers used throughout ... Allen Bradley and IRC Resistors... Handles up to $24^{\text {" }}$ picture tube Layout of most efficient type for ease of servicing choice of those who want the finest in chasses.

CABINETS: For details on Transvision's famous beautiful line of TV Cabinets, write for informa-

tion on Agents Program.

1 YEAR GUARANTEE ON CRTs
17"' Rectangular Glass CRT....................net $\$ 22.25$
20", Rectangular Glass CRT.................... $\$ 31.95$
21" Rectangular Glass CRT................. $\$ 36.95$
Order direct from factory.

Order direct from factory:
TRANSVISION ING., New Rochelle, $N_{1}, Y_{\text {. }}$
FREE: Sample capy of "TV and Eleclranits
Notes". Or send 50c for year's subscriplion.

MONEY-BACK

GUARANTEE:

10-DAY TRIAL: Buy and try the Transvision 630 Type De Luxe Chassis for 10 days. Then. if you wish, you may return it. Your purchase price less 10% (our cost of handling and re packaging) will be promptly refunded.

I
 TRANSVISION INC

DEPT. RE630 NEW ROCHELIE N Y | () Send me 630 Circuit and Technical Data. | () Enclosed find \$______ deposit. Balance C.O.D. Ship___chassis, _.__CRTs | () Enclosed find \$__in full. I accept your 10 Day Trial terms.
| Name
| Address
City

QUESTION BOX

Mask and
Escutcheon
Assemblies

For a professional conversion or custom installation
1 Metal Mask tailared for perfect
fit. Green Sprayed Finish.
$21 / 4^{\prime \prime}$ Tempered Safety Glass.
3 Beautiful Gold Finished Metal Escutchean.
All papular sizes: $14^{\prime \prime}, 16^{\prime \prime}$, $17^{\prime \prime}, 20^{\prime \prime}$ and $21^{\prime \prime}$. Rectangular Tubes only. Easy ta install instructions included.

See your distributor
Send for complete catalog Waldom carries a complete line of NALOOOM 911 Larrabee St. Chicago 10, Illinois

Adds all 70 channels to Televisian Receivers. Proved best by field tests and side-by-side comparisons, the Coaxial Resonant Cavity Tuned Granco UHF Conver. ter employs engineering advances that made Radar possible. Design features continuaus tuning over entire UHF range 465 to 900 Mc ; avoids moving contacts; minimizes oscillator radiation by inherent shielding. Self contained in handsome cabinet $71 / 4 \times 51 / 2 \times 51 / 2^{\prime \prime}$. W:, 5 lbs . No. CTU......Net $\$ 37.46$

Minimum Order $\$ 5.0025 \%$ Deposit with
C.O.D. orders. All shipments F.O.B., N.Y.C

by the fact that an appreciable portion of the modulating voltage was bypassed to ground by C66. Reducing the value of C66 and making the other changes indicated should enable you to modulate up to 100% without distortion. If you find that there is still some distortion, make sure that the taps on the modulation transformer are set for a good match between the modulator and final amplifier. If the impedance match is O.K., try bypassing the 50,000 -ohm screen resistor with a mica capacitor having a value between $200 \mu \mu \mathrm{f}$ and $.002 \mu \mathrm{f}$.
The ARC-5 transmitters are almost identical to those in the SCR-274-N series. The major differences are in the power-plug connections and in the method of feeding the amplifier plate circuit. Series feeding is used in the SCR-274-N units and shunt feeding is used on the ARC-5. The latter was designed for plate and screen modulation, so you won't have as many conversion problems as in the SCR-274-N, which was designed for screen modulation. On the ARC-5, power-plug connections are as follows: Pin 1 is not used; pin 2 is oscillator B plus; pins 3 and 5 connect the 24 -volt line to heaters and relays; pin 4 is ground; pin 6 is the poweramplifier screen B plus; and pin 7 is B plus to amplifier plate.

When converting ARC-5 units, increase the screen-dropping resistor to 50,000 ohms and move the screen lead from pin 6 to pin 7 . If you use a common power supply for the modulator and final amplifier, you may have trouble with r.f. feeding back into the audio circuits through the power supply. In this case, connect a $.001-\mu \mathrm{f}, 2,000$-volt mica bypass capacitor between the B plus end of the plate r.f. choke and ground.

INTERCOM FROM AMPLIFIER

? In describing the multipurpose audio amplifier on page 64 of the February, 1953, issue, the author stated that the amplifier can be converted into a two-station intercom by adding a d.p.d.t. switch. Please show how this can be done. What type of transformer shall I use in the input circuit?-E. R., St. Albans, L. I., N. Y.
A. The partial schematic shows how the talk-listen switch is connected be-

tween the input and output circuits. Use an anti-capacity type switch and shielding as indicated to minimize feedback within the amplifier. The input transformer may be a standard output transformer having a primary impedance of 20,000 ohms or more, or a standard intercom input transformer such as the Stancor A-4744.

Connect a switch in the feedback loop so that it can be opened for more gain when used as an intercom.

The original model uses a transformerless B supply. We recommend that you use a half-wave transformer, connected as shown to supply the \mathbf{B} voltage.

REPLACING 12WP4 TUBE

? I have a Philco TV set with a burned-out 12WP4 picture tube. I could not get an exact replacement so I bought a 12JP4 which was recommended as a replacement. The new socket of the 12JP4 has five leads, the one for the 12 WP 4 has only four. Please tell me how to install my new tube in the receiver, a Philco 51-PT-1208.C. F. B., St. Louis, Mo.
A. The local Philco representative has informed us that it is not practical to use any other tube as a replacement for the 12 WP 4 . This is a special tube which has a thin neck which requires a special deflection yoke and associated equipment. A standard tube cannot be fitted into the assembly.

Circuits using this tube develop only about one-fourth of the deflection power required for standard tubes, and the boosted B plus voltage is only about 225-one-third to one-half less than that developed by sets using standard 12 -inch tubes. Thus, in addition to the mechanical alterations, you would have to redesign the horizontal and vertical deflection circuits to operate from a higher B voltage and to supply the deflection power required for the larger tube. Many of the components would probably have to be changed to insure proper operation and freedom from breakdown. Considering these factors, we believe that it will be less expensive and far less trouble to use another 12WP4 as a replacement. You can obtain one through your local Philco distributor.

End

"Save with confidence"

 Special! Custom Built AUTOMOBILE RADIOSFor 1949, 1950, 1951, 1952 \& 1953 Models, Famous Make

Every auto radio is powerfully built, 6tube superhet. With RF stage and 3-gang condenser far sensitive, lang distancereception. Latest miniature tubes used with
beam-pawer output and oversized Alnico V speaker, offering plenty of volume with excellent tone. Includes Automatic Volume Control and has extra low battery drain. Each model is Custom-Built, designed for the individual automobile and can be mounted within 4 minutes without cables or brackets. No holes to drill. Indicate make and year af automabile when ardering.

For: Ford, Mercury, Dodge, Plym-
S39.17 outh, Chevrolet, Hudson, Studebaker and Henry J.

 tions. Your eyes never have to leave the road for tuning is completely automatic. Ideal performance is yaurs with this custambuilt, 7-tube, 3 -gang radio. Assures top reception wherever you ga.
Superhet. circuit with a rectifier, operates on a 6-V. storage battery. Includes Autamatic Volume control, permanent magnet dynamic speaker and gives 8 -tube performance. Beautifully finished to match yaur car, can be easily installed in a few minutes. No hales to $\$ 54.85$ drill.
Far: Ford, Chevrolet and Dodge. Be sure to mention make and year of car when ordering.

THE ANSWER TO LOW LINE VOLTAGE PROBLEMS

REGENCY MODEL RC-600
U. H. F. Television Converter. Designed to permit recention of the U.H.F. Television signals on roceivers designed for Frequency coversge 470.890 megacycles. Price
537.46

The Lowest Priced Kits on the Market!

6-TUBE RADIO KIT
Kit \#2-A low-priced 6 TUBE KIT designed for high sensitivity, excellent selectivity and good tone quality. Uses selectivity and good tone quality. Uses
$25 \mathrm{~L} 6,2526.6 \mathrm{SQ} 7,65 \mathrm{~A} .65 \mathrm{K7}, 65 \mathrm{K7}$ in 25L6, 2526. 6SQ7, 6SA7. 6SK7, 6SK7 in Tube Kit is shipped with oll parts, Tube Kit is shipped with oll parts,
including punched chassis, resistors, condensers, coils, sockets, PM Speaker, hardware, ete.
And at a closeout price of only (less tubes and cabinet) Matched set of six tubes
$\$ 6.95$ for kit
$\$ 3.25$

3-TUBE PHONO AMPLIFIER Not a Kit!
An assembled unit ready for installation using tone and volume control and six feet of rubber $\$ \mathbf{2 . 9 5}$
cord (Not including Tubes)
With Camplete Set of Tubes..... \$3.95

5 TUBE AC-DC SUPERHET KIT Kit \#l-Five Tube superheterodyne kit, A.C.-D.C. contains all components re-A.C.-D.C. contains all components rehighly sensitive superheterodyne broad. cost receiver, complete with black bakelite cabinet (excludes $\$ 7.95$
wire and solder) Only $\$ 7$.

Kit of 5 tubes (12AT6, 12BA6, 12BE6 $35 W$ W, 50C5). Only $\$ 3.25$

PHONO OSCILLATOR Not a Kitl
Wireless phono oscillator transmits recording for crystal pickups or voice from carbon mike through radio without wires. Can also be used as an intercomm by using P.M. speaker as mike. Price (excluding
tubes)
With Complete Set of Tubes. $\$ 3.95$

Electronic Code Practice Oscillator \& Blinker Kit AC/DC or Battery Operated! Kit H3-One of the most
practical Code practice
oscilators ever deoscillators ever de-
signed, yet one of the
simplegt to build and
operate. operate.
Can be used with any
number of head ohones.
Adjustable Pitch Controi Adjustable pitch Controi
-Any tye of headphone Any type or
can be used.
No warmup No warmup time-ready
to operate instantly. Simple and safe to oper ate
Operates anywhere-with
AC or DC power or from AC or DC power, or from
AGO volt miniature Bat-
tery. Learn slinker code with
flashing light. Blinker can be used as
sionaling device. signaling device,
international Morse codo
included.
 Terms: All merchandise shipped F.O.B. New York City, prices are subject to change withnut notice. Include 20\%
deposit for C. deposit for C.O.D.'s,
WRITE FOR NEW CATALOG-Free!

108

THESE BOOKS HELP YOU EARN MORE IN TV SERVICING

"How to Understand and Use TV Test Instruments"

Provides basic explanations of how each test instrument operates. Covers:VTVoltmeters, AM Signal Generators, Sweep Signal Generators, Oscilloscopes, Video Signal Genera tors, Field Intensity Meters, Voltage Calibrators. Describes each in detail; explains functions; tells proper use in actual servicing shows how to avoid improper ind. cations. Helps you get the mos from your ins you earn more 148 time, helps yo" ear more. 148 ORDER 8 R
y. $\$ 3$
"IV Servicing Short-Cuts"
Describes a series of actual TV service case histories, giving step-
by-step explanations of how the by-step explanations of how the
service technician localized and tracked down each problem. Shows how these frequently recurring troubles can be tracked down and solved in any set. Explains how to apply proper time-saving servicing techniques - gives you the successful experience of experts, to make your service work easier, quicker, more profitable. 100 pages, $51 / 2 \times 81 / 2^{\prime \prime}$
ORDER TK-1. Only $\$ 1.50$

TV in the Customer's Home" Saves you time, work and chassishauling on outside TV service calls. Shows you how to make successful repairs on the spot using these methods: employing VTVM and capacitor probe to trace down trouble; "tube-pulling" to diagnose trouble by observing audio and picture effects; performance tests through analysis of test pattern; adjustment techniques developed for field servicing. Saves time, quids chassis removal. 96 pages, $51 / 2 \times 81 / 2^{\prime \prime}$.
ORDER'TC.i. Only.
$\$ 1.50$
"Television Tube Location Guides"
VOL. 3. Shows tube positions and
functions in hundreds of important TV sets. Helps save servicing time. Often, looking at the picture or listening to the sound, provides the clue to the trouble. Frequently, a tube failure is the cause. This guide, with its clear, accurate tube placement and function diagrams, makes trouble dragnosis and tube replacement quick and easy, with-
 out removing chassis. 192 pages. All new diagrams continuing coverage from Vol ORDER TGL-3. Only............ $\$ 2.00$ Vol. 2. Over 200 pages of tube placement diagrams not included in Vols. 1 and 3.
ORDER TGL-2. Only
VOL. 1. Over 200 pages of diagrams not in Vols 2 and 3. ORDER TGL-1. Only.
"Photofact Television Course"
 A full, easy-to-understand explanation of TV principles, operation and practice. Covers Cathode Beam Formations and Control, Beam Deflection Systems, Beam Mod. and Synch.; analyzes CR tubes, camera tubes, voltage supplies, saw-tuoth generators, sync. circuits, RF input tuning, IF sys circuits, RF input tuning, ir sys with full bibliogranhy and glossary. 208 pages, $81 / 2 \times 11^{\prime \prime}$. $\$ 3.00$

HOWARD W. SAMS \& CO., INC.

| Order from your Parts Jobber today, or | write direct to Howard W. Sams \& Co., Inc. 2205 East 46th Street, Indianapolis 5, Ind.
| My (check) (money order) for \$. . .
| enclosed. Send the following books:

```
V
```

TGL-3GL-1
Address
City
. Zone.

TECHNOTES

CROSLEY 1950.1953 TV SETS

If humidity is suspected as the cause of horizontal drift in Crosley 1950 1953 custom line of TV sets, replace the .01-uf capacitor which parallels the 22,000 -ohm resistor connected between lugs 5 and 6 on the horizontal oscillator transformer T106 (see diagram). The new replacement capacitor is treated with a special glazed coating easy to identify, and has the part number 148813-2.

Replacement capacitors (parts 148813-1 or 148813-2 still in dealer's stock) which do not have the glazed coating may be used in less critical positions in the receiver circuits.-Crosley Service Department

NOTES ON FRONT-END ALIGNMENT

The various leads to a TV tuner are often critical with respect to frequency. Even the power supply leads form loops which couple to the tuned circuits. If they resonate at any of the tuner frequencies, they may absorb power or cause feedback and difficulty. In receiver design, the undesirable resonant loops are shifted away in frequency to eliminate trouble. This permits reasonable latitude in components and physical arrangement.

When the r.f. unit is aligned in the receiver, there should be no trouble from resonant loops. However, if the unit is aligned external to the receiver, care must be taken that unwanted resonance does not cause errors during the measurement or alignment procedure.

A resonant circuit can exist between the r.f. tuner chassis and the outer shield box. This causes coupling to the antenna and r.f. plate circuits. The resonant frequency depends upon the physical structure of the shield box and upon the capacitance between the tuner chassis and the front plate. In the RCA KRK8 units, this resonance should fall between 120 and 135 mc , and is controlled in this design by using insulating washers of different thicknesses (in the front plate to tuner chassis mounting).

The washers are installed to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner-particularly on channels 7 and 8 -will be impaired if the proper washers (for the particular shield box involved) are not used. If the r.f. unit is removed for service, the washers should be replaced in the correct order when the unit is replaced, to restore normal operation. - RCA Service Data

"That reminds me
Order a new JENSEN NEEDLE for my record player."
 Sound system, all in a beautiful Mahogany finish cabinet.

PI. $\$ 15.00$

17"

Pl. $\$ 12.27$ Fed. Pl. $\$ 13.45$ Fed. Excise Tax

Excise Tax

Avaisoble TV CHASSIS

Ready to Operate. Complete with Picture Tube and Speaker.
Featuring above outstanding
7" SET qualities. Ideal for custom $\$ 99^{95}$ built installations, den, playrooms, etc. Perfect for taverns, clubs, etc. PI: $\$ 9.99$ Fed.
$20^{\prime \prime} \quad$ \$112.50 Pl. $\$ 11.25$ SET \$112.50 Fed. Excise Tax All sets have full 1 yr. factory picture tube warranty, and standard 90 day RTMA parts warranty.
Mail and Phone Orders Filled $\$ 25$ deposit Mail and Phone Orders Filled. $\$ 25$
balance C.O.D., Shipping Charges Add'I.
STEPHEN SALES CORP.
45 Croshy St.,N.Y. 12, N. Y. Phone? WO 4-8233

CRYSTAL-PICKUP WRENCH

A convenient socket wrench for replacing the stylus of RCA Silent Sapphire crystal pickups can be made from a $11 / 4$-inch long $10-32$ Allen-type setscrew modified as follows

1. Grind off the threads for a distance of approximately $3 / 8$ inch from the hexagon socket end

10-32 Allen set screw altered - see text
2. Grind off the hexagon socket end so that the hole is only about $1 / 8$ inch deep-or partially fill the hole so that the nut iust goes in until its outer surface is flush with the end. Refer to the drawing for details.- $R C A$ Radio Phono TV Tips

INTERMITTENTS IN TV SETS

Many hard-to-find intermittents in TV sets are caused by unsoldered connections which slipped through factory inspections and by high-resistance riveted ground connections. When I run into a set which is particularly troublesome, I take time out to examine all connections and grounds. If any rivet grounds show the slightest trace of corrosion I clean and solder the chassis.

I use breadboard-mounted horizontal and vertical oscillators to drive the vertical and horizontal output tubes when checking intermittents in the sweep or high-voltage circuits. In this way, I save a lot of time localizing intermittents in the yoke, output transformers, and oscillator circuits.J. Perkinson, Jr.

1B3-GT'S IN SENTINEL SETS

G-E 1B3-GT high-voltage rectifiers may have short life when installed in Sentinel models 462 and 463 TV receivers. All 1B3-GT's except those made by General Electric have pin 5 floating. G-E 1B3's have pins 5 and 7 internally connected.

Sentinel model 462 and 463 TV sets have an 8.2 -ohm filament-current limiting resistor connected between pins 5 and 7 on the 1B3-GT socket. G-E 1B3's short out the limiting resistor, resulting in excessive filament voltage and reduced tube life.

G-E will soon be distributing 1B3's which do not have pins 5 and 7 internally connected. However, until these tubes are available and are definitely identifiable, always clip pin 5 off the tube base before using G-E 1B3-GT's in models 462 and 463 .

Sentinel models $454,455,456$, and 457 have a 2.2 -ohm limiting resistor between pins 5 and 7 on the rectifier socket. Shorting out this resistor will not seriously affect tube life but it is recommended that pin 5 be clipped off the base of all G-E' 1B3's before using them as replacements.-Sentinel Bulletin

STANDARD BRANDS \quad 国 standard warranty New Low Prices

Many other types equally low priced-include all your tube needs with your order.
One of the largest stocks In the country
Terms: 25\% with order, balance C.O.D
All prices subject to change without notice. F.O.B. New York City. Mail order division.

TRAIN

Insure Yourself FASTER, EASIER Installations AT LOWEST COST NEW SUPER-FRINGE MOTORLESS DIREGTRONIC

- 24 elements - NEN HIGH
- Clienarer SHARPE
TURES
- electronit.

ALLY BEAMED
NHLLEAREC
TONS

- NE
 - ELIMINATES GHOSTS
TERFERENCE
New improved HiGain Super Direc
trontc ofers sen-
siational at van sational nd
tages on-
taver motor-
ized antennas-
less installation
cost-less upeep
The new $24-$ ele-cost-less upkeep.
The new thele-
ment Diretronic
ment
 nge range by new
at receiver Twenty.
all directions. New

New 48 -element Mootorless Directronic provides higher tion at 100 miles from transmitur in average location;
Serviceman's kit provides 48 atuminum elenents, 150 ,

SAVE WITH ROGKET 35 FT, MAST KITS
 cluding guy riys. mast connectros. insulators. cable
clamps. Euy hooks. ind swivel mount ing base.
oren

Lowest Prices on Antenna Accessories
 Mast
Chimney moctors
Count

ELECTRONIC'S LATEST TROUBLE-SHOOTER

THE AMAZING TV SERVISET

A precision engineered professional quality electronic test instrument. Ideal for field or bench servicing of
Radio. Television, Radar, Communications gear, etc. Now-Quickly-Conveniently-At Low Cost CHECKS: syne, sweep, rideo. audio circults. TV
high voltage sunplies (DC, liF, or l'ulse), low poltage high voltage sunplies (DC, 1kF, or l'ulse), low poltage supplies, coils, condensers, resistors. tubes, trans-
formers, spaker, ete. Winl localize trouble to a formers, speakers, ete. Win localize trouble to ar and can actually he clamped in clreutt to restore circuit operation temporarily in 80% of component or tub defects. Ideal for localling and confirming inter mittents

SPECIFICATIONS:

RF Si AF Signal Tracer, RF \& AF Signal Injector, AC
\& DC Voltage indicator' $/ 60 / 550 / 20,000$, DC Polarity \& DC voltage 1 ndicator $0 / 60 / 550 / 20,000, ~$
Indicator $60 / 550 / 20,000 ~ y o l t s, ~ L o ~ o h m s ~$
$0-5, ~ H$

 Will comploment your existing equipment and will outperformichent A MUST FOR THE MODERN TV AND ELECTRONICS Comes in handy cloth pouch, complete with all acces-
sotics including ALLNico phone, TV high voltage sotics including ALNICO phone, Test lead, Kolitage
adjoter, phone extension cord,
adapter and complete detailed Instruction mianual adapter and complete detailed Instruction N1a
disclosing latest TV trouble-shooting techniques. See Serviset at
suppin. order di

EE ELECTRONIC LABS., INC,
Dept. RE-4, 233 Dudley
Buy From National ELEGTRONICS -Country's Leading TV SPECIALIST

EXAMINE FREE!

Recurrent Electrical Transients

L. W. Von Tersch

 and A. W. SwagoThis new book gives you a
thorough coperage of the
hasic concepts of recurrent electrical transients, and
their application in telerislon, nuclear instrumentation, radar, computing devices. and industrial controls. Just published-contains up-to-the-minute data. Latest polume in the Prentice-
Hall Electrical Engineering series, ediled by Willam Hall Electrical Engineering series, edited by Witt.
L. The book is designed primarily to proride a technique
of analysis, and to acquaint you with presentative of analysis, and to acquaint you whith presentative
iypes of circuits in which the steady -state waveform types of circuits
may he considered as a series of recursing transients.
The thalysis stresses the time-constant concent in preference to frequency consideration. Rationalized mks uni1s have heen used. Many illustrative examples
are fully worked out to demonstrate the points being are fully worked out to demonstrate the points being made.

CONTENTS
2. Basic Combinations of Resistive, Cabacitive and Inductive Elements
3. Response of Basic Circuits to Simple Wave Forms

Clamping Circuits
Clinping Circuits
Circuits for the Electric Deflection of Cathode-Ray
Tubes Circuits for the Magnetic Deffection of Cathode-Ray
Cireuits for the
8. Trigger Circuits
9. Multivibrators

- - MAIL COUFON TODAY - -

Prentice-Hall, Ine Dent. M-RE-663

Please send me a copy of RECURIRENT ELECTRICAT TRASSIGNTS for 10 days FREE Examination. Within 10 days I will either return the book and owe nothing, or keen it and remit $\$ 3.75$ down (phus postage) and then $\$ 4.00$ in thirty days, in Pull payment

Name
Address
City SH ! Send sirit with this coupon and we will pay | postage. Same return and refund guarantee. -

Parasitic oscillations on strong signals and distortion on high volume may be noticed on this portable receiver. This trouble is caused by overloading of the 1 T4 i.f. amplifier.

To eliminate this trouble, locate the i.f. amplifier grid return lead which runs from lug 2 of the first i.f. transformer to pin 5 of the 1T4 i.f. amplifier. Remove this lead from pin 5 of the i.f. amplifier socket and run it to pin 5 of the 1 T4 r.f. amplifier. This changes the i.f. amplifier bias from 0 to -1.4 volts and minimizes overloading and oscilla-tions.-Wayne Miller

A CURE FOR MOTORBOATING

If you have trouble with motorboating in an audio amplifier or receiver, it may be caused by the use of dual electrolytics as cathode bypass capacitors. Many of these dual units hava a large amount of stray capacitance between sections. If the sections are used to bypass the cathodes of cascade stages, the stray capacitance may cause motorboating by introducing positive feedback between the cathodes. The solution is to eliminate the dual capacitors or use them an odd number of stages apart so the feedback will be negative rather than positive.-Charles Erwin Cohn

NO HORIZONTAL DEFLECTION

The complaint was little or no horizontal deflection; there was a vertical line or band in the center of the screen; and second-anode voltage was low. This is a rather rare trouble which is likely to give you considerable difficulty. Trouble is probably caused by an open capacitor ($0.1 \mu \mathrm{f}$ or so) connecting one end of the horizontal deflection coil to B plus. The horizontal yoke aids in producing the kickback and boosted voltages used for supplying the picturetube second anode and B plus to the horizontal output and other stages. When this capacitor opens, the yoke is effectively disconnected from the circuit and the anode and boosted voltages are too low. Replacing the capacitor clears up the trouble.-DeLoss Tanner
(In some sets, one side of the yoke connects directly to B plus and the linearity coil and the other end to the damper-tube plate through the capacitor mentioned above.-Editor)

"All the time pick up crazy pattern."

THE FUND REACHES

 \$10,664.09
HELP -FREDDIE-WALK FUND

When the Help-Freddie-Walk Fund was organized several years ago in an effort to give aid to little Freddie Thomason, five-year-old son of Herschel Thomason, radio technician of Magnolia, Arkansas, we anticipated the enthusiastic and friendly support of hundred of our readers whom it has been our good fortune to know. What we did not foresee, however, was that the keen interest and encouragement would continue, as the following excerpts indicate:

From W. L. Barth, York, Pennsylvania: "Enclosed is another 'Buck' for Freddie. . . . More later." And from Lt. Samny J. Spiadlin, Ashland, Kentucky: "It has been quite some time since I sent my last contribution. In the meantime, I have been recalled to active duty with the Air Force. But I hope to continue my donations. Hope this will help."

Clevis T. Svetlik, of Cleveland, Ohio, writes: "This dollar and many others are the best use of money I can think of." Jack Goldstein, of Philadelphia, Pa., is a new contributor, who says: "I read your article in the March issue, pertaining to your noble effort in regard to the Help-Freddie-Walk Fund. I deem it a great privilege to offer my contribution and enclose my check for $\$ 10.00$. May it help to make his future a bit brighter."

The Television Service Department of the Lee Wholesale Company (Admiral Distributor), of Kansas City, Missouri, donated $\$ 23.50$, and sent along this letter: "Please add this to the Help-Freddie-Walk Fund. We hope that it will in some small measure help in the future struggle that Freddie will have, but with the courage that he must have along with that winning smile, we are sure that he will make the grade.
"Now that Freddie is about to start his education, please print more information about him."

We most certainly will print all the information we can get about Freddie's activities and progress, as long as his many friends continue to register their interest and encouragement, verbally as well as financially, thereby insuring the "life" of the Fund. And we hope to win more friends for Freddie, for we are certain there is no more worthy cause.

Throughout his life, Freddie, who was born armless and legless, will have to depend upon artificial limbs, and these will cost thousands upon thousands of dollars before the grown Freddie can be permanently fitted. Therefore, we urge each and every reader to send in his contribution, no matter how small, as soon and as often as he can.

GET the MOST for your money - Before you buy, see chart below!
World-renowned EICD
VOLT-OHM-MILLIAMMETERS
\# 536 KII $\$ 12.90$. Wired $\$ 14.90$
\# 526 KIT (with 1% multipliers)
only $\$ 13.90$. Wired $\$ 16.90$

VERIFY AT YOUR DEALER'S	EICO	Co. A	Co. 8	CO_{0}	C0. 0
		All 0 ver $\$ 24.00$			$\begin{gathered} \text { EICO } \\ \text { prite } \\ \text { range } \end{gathered}$
31 ranges?	YES	No	No	No	No
Full-size 3 -inch meter?	YES	Yes	Yes	Yes	No
$\begin{aligned} & 400 \text { ua } \\ & \text { sensitivity? } \end{aligned}$	W絲	Yes	Yes	Yes	No
Zero to 1 v . range on both $A C$ and $D C$?	YES	No	No	No	No
5000 v . range on bath $A C$ and $D C$?	YES	Yes	No	Yes	No
$A C / D C$ sens: $1000 \Omega / \mathrm{v}$?	*ES	Yes	Yes	Yes	No
$D C$ and $A C$ Current Ranges?	7ES	No	No	No	No
In KIT and Wired Form?	YES	Wired Only	Wired Only	Wired Only	Wired Only
Lowest cost in the Industry?	YES	No	No	No	No:
	类 Above	All over \$2400			$\begin{gathered} \text { EICO } \\ \text { price } \\ \text { ronge } \end{gathered}$

Write for FREE Cafolog MC- 68 name of local dealer
ELECTRONIC INSTRUMENT CO., Inc.
64. WITHERS STREET, BROOKLYN H, N. Y.

A brand new series of practical books. Gives you exact directions for correcting TV receiver performance "bugs". Each cure is official, factoryauthorized, direct from the receiver's manufacturer. It is positive! Listings by manufacturer and model or chassis number. Helps correct the most difficult faults - picture jitter, hum, instability, buzz, tearing, etc.

VOLUME 1

Covers 12 prominent brands - ADMIRAL, AIR. KING, ANDREA, ARVIN, BELMONT-RAYTHEON, BENDIX, CALBEST, CAPEHART-FARNSWORTH, CBS-COLUMBIA, CERTIFIED, CROSLEY, DUMONT. Over 120 pages ($5 \frac{1}{4} \times 81 / 4$)), illus. $\$ 1.80$

2

VOLUME 2

Covers - EMERSON, FADA, FIRESTONE, FREED, GAMBLE, SKOGMO, GENERAL ELECTRIC, HALLICRAFTERS, HOFFMAN, INDUSTRIAL, INTERNA. TIONAL, JACKSON. Over 120 pages ($51 / 4 \times 81 / 4{ }^{\prime \prime}$), illus.
$\$ 1.80$

3 VOLUME 3

Covers - KAYE-HALBERT, KENT, MAGNAVOX, MAJESTIC MECK, MERCURY, MIDWEST, MONTgOMERY WARD, MOTOROLA, MUNTZ, NATIONAL, NORTH AMERICAN PHILIPS, OLYMPIC, PACIFIC. MERCURY, PACKARD-BELL, PHILCO. Over 120 pages ($51 / 2 \times 81 / 2$ "), illus.
$\$ 1.80$

VOLUMES 4 and 5

Coming soon! Covers prominent manufacturers not included in the first three volumes.
One service job will more than pay the cost of this series of books!

Buy these books now at your jobbers
leading bookstores... or -

[^5]No amount is too small to receive our sincere thanks and appreciation, as well as the appreciation of Freddie and his parents. Make all checks, money orders, etc., payable to Herschel Thomason. Address all letters to

HELP-FREDDIE-WALK FUND RADIO-ELECTRONICS 25 West Broadway New York 7, N. Y

FAMILY CIRCLE CONTRIBUTIONS Balance os of March 18, 1953..... $\$ 590.5$ FAMILY CIRCLE contributions as of April 16, 1953. $\$ 590.50$ RADIO-ELECTRONICS CONTRIBUTIONS Balance as of March'18, 1953.... $\$ 10,001.09$ W. L. Borth, Yark, Po.

Wesley Brittin, Audubon, N. J
.00 A Friend, Feeding Hills, Mass. 2.00 Van H. Ferguson, Tallahassee, Fla. Herbert Goldstein, New York, N. Y Jack Galdstein, Philodelphia, Pa. Lee Wholesale Co., Television Service Dept., Kansas City, Mo. Mr. \& Mrs. E. Little, Toledo, Ohio Tony Maday, Chicago, 1II., on be half of Ted Jablonski. Tany Maday, Joe Palacz, Ken Petersen, Al Zaccanti, Dave Ashley, Ted Rattmann, Steve Choma, Joe Jaltuch. Tom Gruszka, Ed Miller. Wilbur O'Leary, Andy Luberda, Nick Verallo, Herb LaRue, Chas. Menard, Roy Dati, who donated 1.00 each

Lt. Sammy J. Spiodlin, Ashland, Ky Clevis T. Svetlik, Cleveland, Ohio.

RADIO-ELECTRONICS contribu
fions as of Apri! 16, 1953 \$10,073.59 FAMILY CIRCLE contributions 590.50

TOTAL contributions as of April 16 1953
$\$ 10,664.09$

Jn dernshatk 引uoblications

hUGO GERNSBACK Founder	
Modern Electrics ${ }_{\text {Wioless }}^{\text {Wesseciation of America }}$	1909
Elecetrical Experimenter	1913
Radio News	1919
Scierice \& ${ }_{\text {Television }}$	1927
Radio -Craft	${ }_{1939}$
Short-Wave Craft	

Some of the larger libraries still have contios of ELECTRICAL EXPERIMENTER on file for interested readers.

JUNE 1919

ELECTRICAL EXPERIMENTER

My Inventions, by Nikola Tesla V. The Magnifying Transmitter
"Stove Pipe" Radio
Amateur Radio Restored, by H. Gernsback
E. F. W. Alexanderson's "Barrage" Receiver
Rogers Underground Aerial, by James Harris Rogers
Learning the Code, by Howard D. Wildman
Use of Contact Detectors in Radio Measurements, by Dr. L. W. Austin
Automatic Code Transmitter, by George Harrington
New Type of Transformer
The Evolution of the Stars, by Isabel M. Lewis

Hunting Submarines by Sound, by Brewster S. Beach

210 SO $\$$ COMPLETE $\$$ A.
 IT PAYS TO KNOW!

AUDELS T.V.-RADIO SERVICE LIBRARY presents the important subjects of Modern Radio, Television, Industrial Electronics, F.M. Public Address Systems, Auto Marine Covers Basic Principles-Constraph Ups, etc. Covers Basic Principles-Construction-InStallation - Operation - Repairs - Trouble T.V. Pictures. Install Aerials-How to Test Explains Color Systems \& Methods of Conversion. 1001 Facts-Over 1260 Pages 625 Illustrations-Parts \& Diagrams-Valuable for Quick Feady Reference \& Home Study. Tells How to Solve 'T'V. \& Radio TroublesAnswers T.V. \& Radio Questions.

Get this information for Yourself.
7 DAY TEST - ASK TO SEE IT!

AUDEL, Publishers, 49 W. 23 St., N.Y. 10 Mail AuDELS T.V. RADIO SERVICE LIBRARY 2 Vols. $\$ 6$ 1 monthy until $\$ 6$ is paid.

Name
Address
Occupation.
Employed by

Harry C. Crawford was elected president of Radiart Corp., succeeding L. K. Wildberg. Mr. Crawford has been associated with Radiart and its parent company, Cornell-Dubilier, for the past eight years as works manager and comptroller and assistant

H. C. Crawford
H. A. Triplett joined Littelfuse, Inc., Des Plaines, Ill., as research director.

Left-H. A. Triplett, Right-E. V. Sundt
He was formerly chief staff engineer for Pacific Oerlikon.

Edward C. Hughes, Jr., was promoted to assistant to L. W. Teegarden, executive vice-president of the Radio Corporation of America. Mr. Hughes joined RCA in 1930 as a member of the staff of the Tube Advertising and Sales Promotion Department and has been associated with Mr. Teegarden since 1937. He was most recently assistant to Mr. Teegarden when the latter was vicepresident in charge of technical products of the RCA Victor Division.

Raymond C. Cosgrove was named management consultant of National Co., Malden, Mass. He was formerly executive vice-president of Avco Manufacturing Co., and for four terms president of the RMA (now RTMA). William A. Ready, until now president of National, was elected chairman of the Board and Charles C. Hornbostel was named president and treasurer. A new executive committee consisting of William A. Ready, Charles C. Hornbostel, Louis C. Lerner, Daniel V. McNamee, Jr., and Joseph H. Quick was also announced.

Obituaries

George Kenneth Throckmorton, former vice-president of the Radio Corporation of America, died in Clearwater, Fla. He was at one time president of E. T. Cunningham, Inc., famed radio tube firm in the ' 20 's, and executive vice-president of RCA-Radiotron, an RCA Victor affiliate.

Bayard H. Clark, Lombard, Ill., head of the advertising agency bearing his name, died of a heart ailment. He had been associated with the phonograph
 exceptional choice of resistors, controls and resistance devices.

Expanded listings. Carbon and wire-wound controls include Pick-A-Shaft types taking 12 different shafts, plus non-metallic shaft and high-voltage coupler. Also aircraft-type metal-cased power rheostats, miniaturized carbon and wire-wound controls, sound system controls, power resistors, Glasohms, etc.
Ask your Clarostat distributor for
your copy. Or write us.

Controls and Resistors

CIAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE
In Canada: Canadian Marconi Co., Ifd., Toronto, Ontario

You can't beat

Radio-Electronics
for complete coverage of
Radio, Television and Audio

THESE PRACTICAL BOOKS GIVE YOU THE "KNOW-HOW"

"HIHE ANTENNAS, CONVERTERS AND TUNERS"

Milton S. Kiver gives you all the answers on: UHF Antennas: Full analysis of each UHF type-design, operation, directional characteristics, input impedance, gain-tells you type best suited for any given location and conditions.
Transmission Lines, Matching Networks: tells how to select proper line to deliver maximum signal to receiver.
Installation Practices: Practical advice on proper antenna location and routing of line to set; tells how to check for antenna mismatch, how to determine whether system is properly installed.
UHF Converters: Full analysis of all existing self-contained types, including turret tuner strips.
UHF Tuners: Covers tuner design and operation, ranging from parallel-wire to "butterfly" types-tells how they work.
This book keeps you ahead in TV, makes you a UHF expert, for extra profits. Get your copy today.
ORDER UHF-1 Only
$\$ 1.50$

"HF CONVERTERS"

Covers 21 Models Be among the first to understand the design and operation of the new UHF converters and tuners. This book describes all the popular units and tells how they work with present VHF sets. Covers the following makes:
 Arvin, Crosley, Dumont, G.E., Mallory, Motorola, RCA, Raytheon, Regency, Sarkes-Tarzian, Standard Coil, Stromberg, Sutco, Sylvania. To stay ahead in TV, you'll want this essential book
ORDER UC-I. Only
$\$ 1.00$

ORDER THESE BOOKS TODAY!

HOWARD W. SAMS \& CO., IIKC.

Order from your Parts Jobber today, or write direct to Howard W. Sams \& Co., Inc. 2205 E, 46 th Street, Indianapolis 5, Ind. My (check) (money order) for $\$ \ldots$ enclosed. Send the following books.
UHF-I (\$1.50)
\square UC-1 $(\$ 1.00)$

I Name
Address
LCity.
and radio industries for over 25 years as advertising manager of several prominent companies including Magnavox and Jensen Manufacturing.

Personnel Notes

. Robert C. Sprague, chairman of the board of Sprague Electric, North Adams, Mass., was elected a director of United-Carr Fastener Corp.

Brig. General David Sarnoff, chairman of the Board of the Radio Corporation of America, received the first Founders Award of the IRE at its annual banquet in New York City.

Richard E. Hall was named New York Industrial sales manager of AMERican Phenolic Corp., Chicago, with headquarters in the Amphenol offices in the Empire State Building, New York. He was formerly Boston district manager. William H. Rous, vice-president in charge of sales for Amphenol, also announced the appointment of James Schaefer, formerly of the General Engineering Section in Chicago, as Hall's successor in Boston.

Kenneth A. Hoagland was named chief engineer of the Cathode-Ray Tube Division of Allen B. Du Mont laboratories, Clifton, N. J. Formerly assistant engineering manager of the Tube Div., he succeeds Alfred Y. Bentley who was upped to chief engineer of the Television Receiver Division. Eric Pohle, formerly head of the division's Product Engineering Section, was named assistant engineering manager of the Cathode-Ray Tube Division.
. Robert T. Rees was appointed advertising manager of Trio Manufacturing Co., Griggsville, Ill., manufacturer of TV antennas and rotators.

Glenn Clark was appointed to the staff of K. F. Boldt, advertising manager of American Phenolic Corp., Chicago.

Norman C. Owen and Herbert A. Gumz were named vice-president in charge of sales and executive vicepresident respectively of WEBSTERChicago Corp.

Hiram Prince was named Fidelitone Division Sales Manager of Permo, Inc., Chicago, to handle the Fidelitone and Permo Point lines in Texas, Oklahoma, Arkansas, Nebraska, Iowa, Kansas City, Mo. Howard West, Fidelitone Southwestern Division sales manager, now takes over Louisiana in addition to his present territory

Charles E. Saltzman, John H. P. Gould, Henry Sears, and Henry L. Shepherd were elected to the Board of Directors of La Pointe Electronics, Inc., Rockville, Conn., representing the additional 100,000 shares of common stock issued to Henry Sears \& Co. and Bartram Bros., New York City investment bankers.

Colitors, and Enginesers

IT'S NEW!

it covers all you want TO KNOW ABOUT EQUIVA. TENT AND NEAR EQUIVA. IENT AND NEAR EQUIVA-
LENT TUBES. AMERICAN LENT TUBES.
AND FOREIGN.

WORLD'S EQUIVALENT
 RADIO TUBES

Lists over 15,000 transmitting and receiving tubes from 253 monufacreseiving fubes trom the only book of its kind in the world. Available in 16 lan. guages.

$$
\$ 500 \quad \begin{gathered}
\text { PER COPY } \\
\text { plus ony tox }
\end{gathered}
$$

For Additional Coverage
Write for free folder describing These famous books: Radiotelephone License Manual, Better TV Reception, Antenno Manual, Radio Hendbook and Surplus Radio Con. version Manuals.

The originalQUIETROLE

A REAL CONSTRUCTOR

Dear Editor:

I recently completed the "High Quality AM Tuner" described by John Potter Shields in the February issue. I found the circuit simple and easy to follow. The clear and concise text is a tribute to Mr. Shields.

I did not have a Ferri-Loopstick at the time, so used a standard antenna and coil, connected in the ordinary manner. Neither did I have a 6BD6, so I referred to the tube manual and found that a 6SK7 could be substituted. I replaced the potentiometer with a 100 ,000 -ohm, 1 -watt resistor, as I did not want a volume control in the tuner. I also placed an $8-\mu \mathrm{f}$ capacitor between the plate of the 6 C 4 infinite impedance detector and ground, for further filtering and decoupling. I substituted a 1N35 for the 1N34 germanium diode. No apparent changes in a.v.c.
The 47,000 -ohm, 1 -watt resistor in the 6BE6 plate circuit tended to overheat, and was changed to 2 watts.
The 220,000 -ohm swamping resistors in the i.f.'s were not used. I find the quality of reception has not suffered.
This tuner is feeding a home-built Williamson amplifier using 807's, which in turn feeds a Jensen 12 -inch coaxial speaker in a bass reflex cabinet. The tuner fits my needs exactly.

I have only one difficulty. I pick up a continuous-wave signal I cannot eliminate. How can I get rid of it?

Robert H. Dunbar

Niantic, Conn.

(Rather hard to clear up interference by remote diagnosis, but we'd try an i.f. trap for a start. Incidentally, Mr. Dunbar is losing highs by omitting his swamping resistors.
This letter is an example of what a skilled constructor can do with an article, and is a striking contrast to some sent in by would-be constructors, who complain that they can't go ahead because the article said an 8 - $\mu \mathrm{f}$ filter capacitor was used, but one of the photos showed a 16-uf unit! Mr. Dunbar has adapted the circuit to his needs, to his stock-on-hand, and apparently even to his own musical tastes. Truly, as the author of one of the most popular articles printed in this magazine once stated, common sense is the most important component!-Editor)

"OH SURE, a TEN-inch screen will be large enough, you said why do we need a TWENTY-ONE inch screen, you said...."

MONEY MAKERS

FOR MOBILE-RADIO SERVICE ENGINEERS!

In this profitable, rapidly expanding field, be sure your frequencyand modulation-test equipment is LAMPKIN, with continuous coverage! Don't be limited to iust a few frequency channels!
 The Type 105-B MFM. For Any Number of Frequencies, AM or FM

The Type 105-B Micrometer Frequency Meter, or MFM, measures center-frequency on any number of nearby transmitters, AM or FM, 0.1 MC. to 175 MC. Performs as signal generator for mobile receivers, 20 MC . up. Meets FCC requirements for mohile services, with accuracy guaranteed better than 0.0025%. Can be checked against WWV. Price $\$ 220.00$ net.

The Type 205 FM Modulation Meter For Multiple Mobile Frequencies.

Instantly tunable anywhere, 25 MC . to 200 MC ., the Type 205 neasures maximum FM deviation due to modulation, as required by the FCC. Indicates 0.25 KC . deviation. Simple to use, easy to carry. No charts or tables. Price $\$ 240.00$ net.

Send name and address for hifernture.

Name
 Address
 City ..
 LAMPKIN LABORATORIES, INC. BRADNITRN, FLORIDA

ALPFRITF

Studio Microphones

 at P.A. Prices

Models RBLG-200 ohms RBHG-Hi-imp. List \$42.00

"Kontok" Mikes Model SKH, list \$12.00 Model KKH, list $\$ 18.00$

Special write for Special introductory Offer,
Offer: and 4-page illustrated folder.
AMPERITE OMPAnY. Inc.
561 BROADWAY . NEW YORK 12. N. Y.
Canada: Atlas Fadio Corp., Ltd., 560 King St. W., Toronto

GET INTO ONE OF THESE GREATER OPPORTUNITY FIELDS

Come to the Great shops of Coyne in Chicago. Get practical training in TELEVISION-RADIO-ELECTRICITY-ELECTRONICS - vital in Defense Program. Prepare now for a better job in Industry or higher rating in Armed Forces.
Approved for Veterans-finance plan-enroll now. pay most of tuition later. Part time em-
ployment service while training if needed. Special tuition plan for men of Draft Age. FREE BOOK Clip coupon for Big Free Illus salesman will call. Act NOW. No obligation. No B. W. Cooke, President ELECTRICITY 500 S. Paulina, Chicago RADIO HL RERRIGERATIONEVISION

B. W. COOKE, Pres.

COYNE School
500 S. Paulina St., Chicago 12, III. Dept. A3-81H
Send FREE BOOK and details on:
I \square RADIO-TELEVISION \square ELECTRICITY |
I NAME
I NAME
| ADDRESS. |
$I_{\text {CITY }}$
STATE.

MODEL 324
Because the Radio City Products Model 324 "DO-ALL" Tube and Battery Tester pocks into one instrument the performance of four

. . . Sufficient Facilities to Test

1.

 All TV and Radio TubesSockets for all standard 4,5.6.7. octal. Ioctal. miniature and subminiature are wrovided. Tests transmitting. hearing sid, ballatt. olilot lisht. gaseous rectinners and tuning indicator tyous. All
readinus are indicated on a large easily read meter.

2 Cathode Roy Tube
Checks all magnetic doffectlon typos right in the set or carton. Will locate and isolate all shorts or leaks.
3.

Batteries
Tests popular portable battery tyyes under load. Indieates true condifion of battery under check.
4. All This and a Reactivator Too Gives extra life to otherwiso dim or bad picture
tubes.
Ands a professional note to any service bench or store counter. Availabies in hot counter wat combine $\mathrm{T}_{\text {wo }}$ styles To_{0} meot Your Service Needs-
 Model 324 P -Combination portable-counter model. Smart looking. hand.rubbed earrying case with slip.hinge cover-includes battery lest leads. Size: $161 / 4^{\circ} \times 141 / 9^{\circ} \times x$ Weight: 12 los. Price

Remember You Can Do Alore IVith A "DO-ALL
See it at Your Parte Distributor
Write Dept. RE-G lor RCP '5s catalonue.

RADIO CITY PRODUCTS CO.,INC.

152 West 25in Siect New Yoit 1, N. Y.

A CORRECTION

Dear Editor:
May I call to your attention errors which, through no fault of yours, appeared in a patent announcement on page 113 of the November, 1952, issue of Radio-Electronics, under the caption, "Sine Computer?" The error curve and circuit configuration are correct, but the actual resistance values are not

the ones for this curve. The correct values are shown in the accompanying diagram.

Unfortunately, I did not see a copy of the final application nor receive a copy of the patent. My attention was called to the errors by one of your readers, Mr. Ross M. Chiles of Northrup Aircraft, Inc., Hawthorne, Calif. C. C. Shumard

RCA Laboratories Div.
Princeton, N.J.

MORE ON TUBE KITS

Dear Editor:
The circuit below, an exact duplicate of one encountered while repairing the spasmodic glimmle of the heterodyne, with its special tube, has presented certain troubles to the expectant owners of "Tube Kits, Inc."

Though being the proud possessor of one of these extra fine kits, I have been unable to duplicate the above tube, due, perhaps, to its fly-back characteristics, plus the fact that the filament current has not been included with the kit.

Therefore, as a convenient means of clearing the good name of Tube Kits, Inc. why don't you, of Radio-ElecTronics, have Prof. Adolph Glockenspiel market an advanced version of this remarkable phenomenon, a kit which includes component parts such as quarter-moon cathodes, saw-tooth grids, and plates with the low-mu already sprayed on them? If this were done, I firmly believe the qualified technician would encounter no further difficulties in the construction of radio tubes that would really do things, nor would I ever again run afoul of a circuit which in its entirety stumped me and the diversified abilities of the tube kit of Tube Kits, Inc.

Gentlemen: Without qualms and quibbles, Tube Kits Inc. has shown the service technician and others, proof; proof not only that it is very possible to do it, but that sometimes even the man without previous experience tends

* CATHODE RAY TUBE SPECIALS *

 Model C400-HA Fl Amplufier Net Net
Model
RC1O-AM-FM Tuner We also carry MAsco-bogen - PILOT. ©tc. Ampli, - Wers-Mre.Am

STANDARD TUNERS

- Kerradile Tung. SISTRIBUTORS for: General Electric.

Wo carry complefe stock of MI-FIDELITY and
 - also carrye sompor dineount. Alop many other apecial

- Terme 20\% with ordel. Ealance coD. All price: Write for our latest price list and Mi-Fi Write for our Catest

to wish he had.
In closing, may I ask that you of Radio-Electronics, and of that great German Noisivelet outlet, in Krause-kopf-f-f-f-f-f-on-the-Rhine, get together

and publish this documented circuit, along with the information necessary for me to construct the above-shown tube from the kit.

George D. Philpott
Columbus, Ohio

WATCH THAT BOOSTER!

Dear Editor

This is not meant to discredit any make of television booster, but simply to point out how important it is-especially in fringe areas-to pick the right type for each job.

In my service work I run across many cases where full-time bricklayers picking up a little side money with alleged TV installations have hooked up 6 J 6 boosters to sets with cascode front ends. The results are generally pretty miserable.

The point is, the booster must be at least as good as the TV tuner if you expect to get decent pictures. If the set has a cascode front end it's a waste of time and money to hook up anything but a cascode booster. The higher noise level of a pentode or grounded-gridtriode booster stage cancels all the benefits of the cascode input stage in the receiver

John J. White
Lewes, Delaware

CORRECTION

A new video tape recorder is discussed in an item on page 16 of the April issue. In the discussion, 100 and 15 feet per second are given as comparative speeds for video and audio tape recorders, respectively. The standard of measurement should be inches per second instead of feet per second as stated. Our thanks to Mr. R. Waterstripe of Hattiesburg, Miss., for detecting the error and calling it to our attention.

```
WATCH FOR THE JULY ISSUE OF RADIO-ELECTRONICS ON THE NEWSSTANDS
JUNE 26
```

BARGAINS•BARGAINS•BARGAINS
You can depend on STEVE-EL to come up with 'terrific buys"! Our latest catalog is chock full of 'em. WRITE TODAY!

\$1995
Factory alifgned ready

CASCODE TUNER

 tubes and instructions.

Brand new, individually boxed, Many FAR BELOW WHOLESALE COST:

SPECIAL DISCOUNTS sist. 100
Ass

ELECTRONICS CORP.

Dept. E-6 61 Reade St., New York 7, N. Y
COrtlandt 7-0086

OSCILLOSCOPES ARE "GOLD MINES"!

\author{

- if you learn how to use them fully on all types
}

of service jobs!

Learn to handle the oscilloscope fully on all types of AM, FM and TV service work-and watch your efficiency and earnings soar
USESDERN OSCILLOSCOPES AND THEIR USES, a fact-jammed 326 -page book by Jacob H Ruiter Jr., of the Allen B. DuMont Laboratories, contains exactly the help you need-written in a way you can clearly understand. It shows you how to use your scope for fast accurate work on all types of jobs from troubleshooting to realigning; how to make connections; how to adjust circuit com ponents; how to set controls and how to analyze paterns fast and accurately. 370 helpful illustra
of pattern photos make
hings doubly clear.
No other type.
specific service training tands to mean so much o you in terms of being able to do better, faster nd more profitable

MAIL ORDER

V
VWhen, where, why and exactly how to your oseilioscopo How to interpret patterms How to handle tough obs in less time
10-DAY FREE EXAMINATION
Dept. RE-63, RINEHART BOOKS, Inc.
lechnical Division
232 Madison Ave., New York 16 N Y
Send MODERN OSCILLOSCOPES AND THEIR USES for 10-DAY EXAMINATION. If I decide to keep the book, I will then remit $\$ 6.00$ plus a few cents postage in full payment. If not, I will return book postpaid and owe you nothing

- Name

Address

City, Zone State
Employer's Name \& Addres
Maney back if book is returned in 10 days.

 UHF
Vital Serviceman's information regarding Installation, Reception, Converting existing Sets, Tuners, etc.

, fringe area RECEPTION

How to get best results at lower costs, improve performance, ANDOTHER IMPORTANT SUBJECTS
Get this special FREE copy, or for regular sub scription to "TV and Electronics Notes" send 50c
 TRANSVISION, INC., NEW ROCHELLE, N. Y. Dedt.RE \square Send FREE, the latest issue of "TV and Electronics Notes" on UHF, Fringe Area Recep.,etc. \square Enclosed find 50c for regular subscription.
Name
Address
City

Tesco engineers developed the ULTRA-TENNA

TV PRODUCTS CO. NEW YORK, 13, N. Y.
NEW YORK TO 'FRISCO. .. . IT'S TESCO

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturers, whose addresses are listed at the end of each item. Use your letterhead-do not use postcards. To facilitate identification, mention the issue and page of RadioElectronics on which the item appears. All literature offers void after six months.

PRINTED CIRCUITS

RCA Printed-Circuit IF Transjormers, Coils, and Traps is an 8-page booklet describing printed-circuit components designed for use in television receivers with intercarrier-sound systems and picture i.f. and sound i.f. carriers of 45.75 and 41.25 mc respectively.

Copies free on request from Commercial Engineering Section, RCA Tube Depurtment, Hurrison, N.J.

RECEIVING TUBES

The RCA Tube Department has brought out a revised edition of RCA Receiving Tubes for $A M, F M$, and Television Broadcast. The 24-page booklet covers more than 495 RCA receiving tubes including 45 kinescopes. It provides quick and easy reference to the characteristics and socket connections for each tube type, as well as a classification chart which facilitates the selection of the proper tube type for a desired purpose.

Request Form 1275-F from your distributor or send 150 to Commercial Engineering Section, RCA Tube Department, Hurrison, N.J.

TV REPLACEMENT GUIDE

TV Replacement Guide No. 405 gives recommendations for replacing i.f.-r.f. coils and transformers in over 6,000 models and chassis, plus exact replacements where required.

Available free of charge from Merit Coil \& Transformer Corp., 4425 N Clark St., Chicago 40, Ill.

ANTENNA TIPS

TV antenna installations are the subject of a booklet issued by Snyder. Edward M. Noll and Matt Mandl have prepared the 37 -page 'Tenna Tips which gives basic information on fundamental antenna types, includes hints on many phases of installation, and factors involving reception at the ultrahigh frequencies.

Copies can be obtrivired without charge by writing to Dick Morvis, Sny/der Mfg. Co.. 22nd \& Ontario Sts., Phila. 40, Pa.

PHONO FACTS

Audak's 1953 Electronic Phono Facts is a 20-page booklet by Maximilian Weil, answering more than 100 questions on audio-electronic music systems. Among the topics discussed in nontechnical language are the pickup, stylus, tone arm, turntable, and other components, and care of records.

Free on letterhead request to Audak Co., 500 Fifth Ave., New York 36, N. Y. END

ASSEMBLE YOUR OWN ELECTRONIC ORGAM

SAVE HUNDREDS OF DOLLARS WITH OUR COMPLETE KITS AND STEP-BY-STEP INSTRUCTIONS.

Tone Generators Keyboards
Power Supplies
Tremolos
Amplifiers
Tone Cabinets Consoles

For Details Write Today To:

ELECTRONIC ORGAN ARTS

Box 16454, Dept. RE-I
Vine Station, Los Angeles 38, Calif.

VACUUM-TUBE OSCILLATORS by William A. Edson. Published by John Wiley \& Sons, Inc., New York, N. Y. 6×9 inches, 476 pages. Price $\$ 7.50$.

There has been much talk of transiseors lately, but tubes will continue as oscillator elements for a long time. This volume presents an orderly and clear description of tube oscillators. It discusses not only oscillators, but also numerous topics related to them. It stresses design and is written for graduate engineers.

Nyquist plots are described early and used often. Feedback, negative resistance, resonators, and circuit elements are described. Crystal-controlled, relaxation, phase-shift, and bridge-type oscillators are among those included here. Among related topics treated are frequency multiplication (by tubes and magnetic circuits), tube noise, modulation (of oscillators), synchronization, a.f.c., and magnetostriction.- $1 Q$

REMOTE CONTROL BY RADIO, by A. H. Bruinsma. I'ublished by Philips Technical Library. 6×8 inches, 95 pages. Distributed in U.S. by Elsevier Press Inc., 402 Lovett Bilyd., Houston 6. Texas. Price \$1.95.

This book was written to describe two actually constructed ship models controlled by radio. Photos, diagrams and design data tell the whole story. The simpler model uses seven tubes and works through two independent channels. It is amplitude modulated. The second model uses 44 tubes and is supplied with eight different channels. It is pulse-modulated. It controls a rudder, screws, lifeboats, crane, catapult, and other equipment, all by remote control. Its engine room contains twelve relays and six motors!

This manual will, of course, interest experimenters who have made remotecontrolled units or plan to do so. Aside from model building, it also contains valuable data and practical information on modulation, sync pulse circuits, crosstalk elimination, etc.
The tubes used in the models are all European types. However, the appendix contains data on them (14 different types).-IQ
THE USE OF A.F. TRANSFORMERS by N. H. Crowhurst. Distributed by British Radio Electronics, 1 Thomas Circle, Washington 5, D.C. $51 / 2 \times 81 / 2$ inches, 63 pages. Price $\$ 1.00$.
Many technicians and music-lovers have been led to believe that a.f. transformers are obsolete and not adapted to hi-fi applications. A glance through the latest catalogs shows this to be untrue. Modern transformers (when properly used) are designed for excellent fidelity, efficiency and compactness. This book shows how to choose transformers for optimum results and how to test their performance.
The handbook is written in clear language with numerous diagrams and charts. It describes measurements for distortion, power handling capability, insertion loss and efficiency. It explains what happens to the "highs" and the "lows" when circuit values are varied. Charts help to calculate reactances, load impedances, response curves, etc. $-1 Q$

Unlimited Opportunities in RADIO ENGINEERING

DEGREE IN 27 MONTHS Complete Radio Engineering course including lelev, U. H. F. and F. M. Bochelor of Science Degree olso in Mech. Civil Elect., Chem., and Aero. Eng.: Bus. Adm., Acct. Extensive compus, modern buidings well equipped labs. Low cost. Prep courses. Personal. ized, oractical instruction. Founded 1884. Plocement service. Growing shortage of engineers.
Prepare now. Approved for Korean vats. Prepare now. Approved for Korean vets.
Enter June, September, January, March Enter June, September
Write for cotolog.
Ti M TRHSTATE COLLEGE

TV REPAIRMEN MAKE TOP MONEY!
 essentials for a good iob as service technicion. Graduates in great demand: iobs are plentiful in this growing field. Other courses in electronics,
radio operotion and maintenance. Day or evening radio operotion and maintenance. Day or evening ployment in local industry.

Wrize for rintalog 111 Today
INDIANAPOLIS ELECTRONIC SCHOOL 312 E. Washington, Indianapolis 4, Ind.

 theory and design, lelerkion. Moderng lab. Low tultion.
 in Aeronautical, Chemtcal, Civil, Electrical. and Vechamiral Emainepring. G.I. Gov't approved. Enter
June, September, December. March. Catalog. INDIANA TEGHNICAL COLLEGE

BECOME AN ELECTRICHL RAGILEER

Bachelor of Science Degree in 36 months.
Major in Electronics or Power. Now, prepare for a career in these rapidly expanding fields.

This school will prepare you to become an engineer, technician or service man. Previous military, academic or practisal training may be evaluated for advanced credit.

Enter Both Radio and Television

In 12 montlis you can attain the RadioTechnician's certificate. An added 6 months course qualifies you for the Radio-TV Technician's certificate and the Degree of "Associate in Applied Science." The Technician's course is the first third of the program leading to a Bachelor of Science Degree in Electrical Engineering with a major in Electronics.
Also offered: 12-month Radio-TV serv. ice course; 12-month Electronics or Electro Technician Courses; 6-month Electrical Service Course and 3-month refresher and general preparatod classes.

Terms Open April, July, Oct., Jan.
Famous for its Concentric Curriculum. Faculty of specialists. 50,000 former students. Annual enrolment from 48 states and 23 overseas countries. Nonprofit. 50th year. Courses approved for Veterans.

milwaukee
SCHOOL OF ENGINEERING

[^6]

ADVERTISING INDEX

```
Allied Radio Corp.
American Eleotronics Co.
American microohose Co.
American phenolic corp. Radlo c
Amperite Co., Incion of America
M,
Atsas, Saund corp,
Barett Electronics co.
*
l
*
*)
BS-Hytron'(Div. of columbia Broa
Mapol
Century Electronics co
Channet master Corp.g.ingo., inc:
clarostat Manyracturing co: Elec,
Commissioned Electronic:
Concord Radio co
oyne Electrical and tv padio schoo
Crest Labrhaorie.." inc.
Davis Electronics, inc
*)
*)
Edlic Electronics,
Electro products
*)
\
E
\spey Mantacturing Co., Inc. ....
OMn WWon Products
General Electric Co.:
General Test Equipment (%)
Greytock Electronic Supply co..
Hughes Fesearch and Develooment 
lu
juterational correspondence sc
Jones and Laughin steel c.
Kapner and c
klein 1ndustries, Manucl.
Lampkin Labiratories.
Lithone Radio Corp.
Mallory and co.," inc., p
Manntred EIEctronics
```



```
Merit Goil and Transtomer co.
Moss Electronic Distributing co.
National Radio Imstitute
Nationtua Schools,*'
Mopportunity Alots
Perma. Power
l
precise Development coirp
precision APparatus co.pinc
M,
```



```
RCA victor Division (Radio corporation of Front cover, 17.
Rad-Tel Tube Co
Radiart corp.nduy.
```

RADIO SCHOOL DIRECTORY PAGE 119

Candler system co.
Indiana Tecknmical college
Indianapolis Electronic Schoo
indianapotis Electronic school
RCA Institutes

Radio-Television Training. Assn.
Raythen Manufacturing io.
Regency Div. (1.0.E.A. Inc.)
Raytheon Manufacturing Co.
Regency Div. (1.0.E.A., Inc.)
Relay Sal

Rice
Ricer, Junn F.
Rinehart Boks, inc:
E. ...

Rytel Eiectronic manuacturing co.
Sams and Co., Howard W.
sams and Co.ct Howard
Sangamo Enctrir Co.
Schia radio co.
Sience-Fiction
Sken
Sky ine Man ufacturing co.
Sprayberry Academy of Radio

TV Circuits co
tab
Tallon Co. inc.
Tel-a-cay Enterprises. In
Telematic Enterprises. Inc
Telesound Corp.
Televisision intion Materials, Inc.
Television materials.
Trans sision.
Trio manufacturing $\mathbf{c o}$
Uno wanteraturing co
Witdod
Thenical Labs

Radio-Electronirs does not assume responsi bility for any errors appearing in above Index.
 DELIVERY FROM STOCK!

RELAYS

Our stock of more than a million relays - in over a thousand different types - is the world's largest. Don't delay your production for want of large or small quantities of relays of any type.

Telephone, wire or write for quotations.

NEW AND MORE COMPREHENSIVE
1953
RELAY SALES CATALOG
NOW READY
Be sure to send
for your copy

RADIO-ELECTRONICS

... $\mathbf{3 0 0}$ OHMS IMPEDANCE
Correct size wire and spacing re. sults in 300 ohms characteristic impedance.

.. PERFECT IMPEDANCE MATCH

This means maximum signal transfer from the antenna to set

1/12 THE RADIATION LOSS

$1 / 4$ the spacing means $1 / 12$ the ra diation loss of 450 ohms open wire lines.

EXTREMELY LOW LOSS

Air dielectric plus clear poly styrene spacers results in the lowest possible loss of signal.

LESS NOISE PICKUP

Perfect impedance match eliminates standing waves-this plus close spacing results in the lowest possible noise pickup.

EASILY INSTALLED

Uses conventional stond-offs-no speciol hardware needed. Enters home through $1 / 2^{\prime \prime}$ hole.

EXTREMELY LONG LIFE
No. 18 copperweld conductors, polystyrene spoces combined with very low wind resistance means virtually indefinite life.

HIGH MECHANCAL Strength

Copperweld construction plus light weight and low wind resistance make 200^{\prime} unsupported spans possible.

EASY TO USE SPOOLS

Packaged on 100, 150, 200, 250 convenient, easy to use spools.
All the above features mean: BETTER RECEP. TION-LONG LIFE-EASE OF INSTALLA OPEN WIRE OU COST when You use LL-300 for free circular. Order through your Jobbers or write R. J. BUCHAN CO.

Bricelyn 2, minn.

RADIO SPECTRUM CONSERVA. TION, A Report of the Joint Technical Advisory Committee of the IRE and RTMA. Published by McGraw-Hill Book Co., Inc., New York, N. Y. $51 / 2 \times$ 8 inches, 221 pages. Price $\$ 5.00$.
Radio channel assignments are as important to the general public as traffic control is to a large city. Whether you run a ham shack, watch TV, listen to the ladio, send radiograms, rely on navigation and aircraft safety signals, or utilize diathermy, you need Intelligent allocation that permits a maximum of services with minimum interference. This report covers past allocations, of fers a critique of present assignments, and presents an ideal plan for the future.

Aside from material pertaining directly to allocations, the volume also contains an excellent exposition of propagation characteristics. Almost 100 pages are devoted to this subject. It discusses such topics as receiver and atmospheric noise, maximum usable frequencies, skip distance, mechanism of propagation, and effects of rain. Hams, engineers, and the general public will find interesting and important data here.

An extensive bibliography is pro-vided.-IQ

STORAGE TUBES AND THEIR BASIC PRINCIPLES, by Max Knoll and Benjamin Kazan. Published by John Wiley \& Sons, Inc., 440 Fourth Ave., New York 16, N. Y. 6×9 inches, 143 pages. Price $\$ 3.00$.

This is the first book on a new and important field: charge-controlled storage tubes. These are used in TV, radar, computing, and communications.

The first part describes generation of potentials under the action of light or electron bombardment. This is followed by a chapter on "writing" (establishing a charge pattern) and "reading" (interpreting the pattern). Succeeding chapters describe the principles of various conversion tubes: electrical-electrical; electrical-visual; visual-electrical. A bibliography completes the volume. $-I Q$.

END

"That reminds me-our television set needs fixing.'

NOW! BECOME EXPERT AT RADIOTELEVISION

IN 4 EASY STEPS!

 Experts-Takes Yyu By Famous PLE STEPS From Basie Theory PLE STEPS From Basic Theory
to Problems of Relair. Installation, Color TV, etc. NOW you can do ANY service- or repair iob like an expert; operate field. testing equipment; understand problems of TV, FM1-AM transmission, etc. Step into a good-paying service business. Train yourself AT HOME . . IN SPARE TIME with the McGraw-Hill
Radio and Television Radio and Television Servicing Library.

2296 Pages-
1611 Hustrations The men who wrote
this complete 4 -volume Li brary are among the outstanding radio and TV mstructors in America to-
dav. Every detail is clearty explained in over TWO ГHOUSAND PAGES of step-by-step instruction step-bv-step instruction
and overSIXTEEN HUN. DRED "how-to-do-it" il lustrations, cross-section diagrams, etc. The review questions and answers "nail down" every thing you learn. At-a plance "trouble-shooting' charts show how to dias nose instantly any radio or TV breakdown and how to repair it ex The library
The Library will pay for itself many times over. it gives all you need to know for FM and lis in exam; gives an experienced technician more confidence and skill.

SEND NO MONEY

Mail coupon below to examine complete four-
volume Library FREE for 10 days. No obligation. Or you may examine individzal books FREE for 10 days by checking the proper boxes in coupon.
FREE IO-DAY TRIAL COUPON

McGRAW-HILL BOOK CO., Inc., Dept. RE-6

 327 West 41 st St., New York 36, N. Y.Radio and TY for 10 day free examinalion the Radio and 1 Servicing Library, 4 Vols, (Regular retail price is $\$ 26.75$; Special Course Price only $\$ 21.95$ in easy installments.) If not satis. fied with Course, I will return it. pay nothing. Otherwise, I'll send $\$ 1.95$ plus delivery charges then and only $\$ 4.00$ monthly for 5 months. If vou wish to examine any of these books indi. vidualiy, check below the ones you wish us to
send vou for 10 Davs' PREE EXAMINATION: \square Essentials of Radio, \quad Elements of Radio Essentials of Radio, Elements of Radio
$\$ 7.50$ - Television Servic. Basic Television, $\quad \square$ Television
$\$ 7.50$
ing, $\$ 6.50$
For any book I keep, I'll send $\$ 2.00$ plus deliv. ery charges in 10 days, balance in easy monthly ame

Address..
City.
Employed by
Zone...... State.
RE. 6 |
\square WE PAY FOR DELIVERY if you send first | payment of $\$ 1.95$ when ordering Library or (prices above). Same return privilege.

a big, new replacement market for

Mallory Vibrators ...ELECTRONIC HEADLIGHT DIMMERS

THE MARKET Already, over a hundred thousand new automobiles are equipped with automatic, electronic headlight dimmers. By the end of the year this figure will be multiplied several times ... and the first of them are beginning to need service.

THE OPPORTUNITY This can be big business for you . . . business that may grow even larger than automobile radio service. But, if you are to get full benefit of this new market, automotive shops must be told that these are electronic devices . . . devices that should be serviced by qualified radio service men. Explain it, now, to every car dealer and shop for which you do service work.

THE PRECISION PARTS Automatic headlight dimmers depend on a vibrator power supply unit. When it is time for vibrator replacement, you can be sure the job is right if you use Mallory. As in the case of automobile radios, Mallory worked closely with the manufacturer and played an important part in this new development by supplying the first original equipment vibrators. With just three Mallory Vibrators you can service any unit now on the market.

Depend on Mallory
for
Approved Precision Quality

How's your

"

YOU can measure your "welcome rating" on the basis of how many times you have to visit a customer to satisfactorily complete one service call. The less frequently you are called back, the more your good services are appreciated. Fewer call-backs cut overhead . . . build confidence . . . leave you more time for more satisfied customers. Cutting call-backs is the most effective way of snowballing your profits.

The RCA trade-mark makes your call doubly effective. First, because customers have confidence in products bearing the RCA trademark. Second, because experience has proven that the superior quality of RCA Receiving Tubes and Kinescopes is your best measure of protection against costly call-backs due to premature tube failures. You can be sure that, with RCA Tubes, the job is well done.

Helping you to safeguard your reputation is a vital, everyday service of RCA Tubes. And that protection is yours at no extra cost.

Unlock the door to bigger profits

Here's your key to better business . . . RCA's dynamic Dealer Identification Program. Ask your RCA Tube Distributor for your copy of the colorful, 16 -page booklet "A Magic Pass-Key to Customer Confidence." It tells you how-for the first time-you can become a Registered Dealer . . . and get extra sales benefits.

ADV Plans,

Copyright Notice:

The entire contents of this CD/DVD are copyright 2014 by ADV Plans, LLC. All Rights Reserved.

Reproduction or distribution of this disk, either free or for a fee is strictly prohibited. We actively monitor and remove listings on eBay thru Vero.

You are free to copy or use individual images in your own projects, magazines,
 brochures or other school projects.

Only the sellers listed here are authorized distributors of this collection: www.theclassicarchives.com/authorizedsuppliers

Please view our other products at www.theclassicarchives.com, or our ebay stores:

[^0]: RADIO-ELECTRONICS, June 1953, Vol. XXIT゙, No. 6. Puhlished monthly at Erie Are, F to G Sts.. Philadelphia 32. Pa., by Gernsback Publications, Ine, Entered as Second Class matter September 27 , 1948 , at the Pos. Office at ['hilidelphia. P'a, under the Act of March 3, 1879 . countries, $\$ 3.50$ for one year; $\$ 6.00$ for two years; $\$ 8.00$ for three years:
 EXECUTIVE, EDITORIAL and ADVERTISING OFFICES: 25 West Broadway, New York $\mathbf{7}, \mathrm{N}$. Y. Telephone REctor $2-8630$. Gernsback I'ublications. Inc. Hugo Gernsback. President; Mi Harvey Gernsback, Vice-Presldent: G. Alique. Secretars. When ordering a change bease furnish an address stencil impresslon froma recent wrapper. Allow one month for change of address. BRANCH ADVERTISING OFFICES: Chicago: 100 E. Ohio SI, Ter Agency, Melbourne. France: Brentato s, Paris 2e. Belghm: Agence et Messageries de la Presse, Brussels. Holland: Trllectron, Heemstedo. Greece: International lBook \& News Agency, Athens. So Africa: Central News Agency, Led., Johanneshurg; Capetown: Durban, Natai. Universal Book Agency, Johannesburg. Middle. East, Steimatzky Middle East Agency, Jerusalern. India: Broadway New Cenire, Dadar. Bombay \#14. Pakistan Paradise Book Stall, Karachi 3, Copyright 1953 by Gernsback Publications, Inc. Text and York 7, N. Y. ${ }^{\text {Trademark registered U.S. Patent Office. }}$

[^1]: | Order from your Parts Jobber today, or I write direct to HOWARD W. SAMS \& CO., Inc. 2205 E. 46 th Street, Indianapolis 5, Ind.
 | My (check) (money order) for \$. . . . encl. Send: \square AR-1 \$4.95 \square AR-2 \$3.00 \square AR-3 \$3.00Complete 3-Volume Library $\$ 9.95$

[^2]: Extromely narrow "Yagi-type" forward lobe; no side lobes; very high front-to. bock rotio

[^3]: * National Bureau of Standards

[^4]: | CLEVELAND INSTITUTE OF RADIO ELECTRONICS
 4900 EUCLID AVENUE, DESK RE-53
 CLEVELAND 3, OHIO
 (ADDRESS TO DESK NO. TO AVOID DELAY)
 I want to know the facts, without obligation, about the proft opportunity in 2 -way mobile radio servicing. Rush me your FREE booklet: "There's MONEY FOH YOU IN 2-WAY MOBILE RADIO SERVICING." and give tee the detalls about this tremendously expanding new radio field

 NAME
 ADDRESS

[^5]: .---MALL THIS COUPON - TODAY
 JOHN F. RIDER, Publisher, Inc.
 480 Canal Street, New York 13, N. Y.
 Please send me book(s) circled. I understand, if not satisfied, I may return them within 10 days for full refund. 123
 NAME
 ADDRESS
 CITY \qquad
 STATE
 (Please Print)

[^6]: milwalkee school of engineering
 Dept. RE.653, 1025 N. Milwauke
 Milwaukee 1. Wisconsin
 Send: \square Free 160-page Catalog describing LiecHical Fngineertug Courses; Bookiet on Careers in Radio-TV

 \qquad
 \qquad

